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General equations are given for computing the results of any (j+j) dose parallel line
biological assay based on an incomplete block design. Only the information from
comparisons within blocks is used. The computation is illustrated numerically by means
of a (2+2) assay of gastrin devised and performed by Lai (1962), in which-only three of
the four doses could be given to each animal.

The aim of this paper is to illustrate the use of balanced incomplete block designs
for biological assay.
The method of computation is illustrated using results obtained by Lai (1962),

who used a (2+2) dose Youden square design for the assay of gastrin. The
equations given are, however, generally valid for any (j+j) dose biological assay
based on a balanced incomplete block design. Catalogues of such designs are
given by Cochran & Cox (1957) and by Fisher & Yates (1957).
Only that part of the computation based on comparisons within blocks is given,

partly for simplicity and partly because, as explained below, more elaborate calcula-
tions would frequently yield little extra information (as in the present example).

THE NATURE OF THE DESIGN

The assay to be described is of the (2 +2) type, that is it uses two doses of the
standard preparation of gastrin and two of the preparation of unknown potency.
Obviously it would be best to give all four doses to each rat (using as many rats
as are necessary for the accuracy required) so that the estimate of potency of the
unknown preparation is not biased by differences in sensitivity to gastrin between
the individual rats. Thus a randomized block or Latin square design would normally
be used. However, Lai (1962) found it impracticable to obtain from each animal
responses to more than three of the four treatments. The duration of action of
each dose was such that if all four were given to the same animal responses would
have had to be so close together that they would interact, or else the assay would
have had to be impossibly long. Consequently the fourth dose had to be carried
over to a different animal.
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The aim of the method of calculation used is to give, with as little computation
as possible, an estimate of the potency of the unknown preparation unbiased by
differences between rats, limits of error for this estimate, and tests of the validity
of the assay.

The Youden square (Youden, 1937, 1940) is a member of the class of experimental
designs known as balanced incomplete blocks (Yates, 1936, 1940). The blocks
(in this instance individual rats) are incomplete because each contains fewer than
the total number of treatments; only three out of four in the present analysis. The
design is said to be balanced when, as in the present example, each treatment is
given an equal number of times and each possible pair of treatments is given to
the same number (A) of rats (for the design in Table 1, two rats).

TABLE 1
THE GENERAL DESIGN (A) AND THE PARTICULAR CASE (B) OF THE

GENERAL DESIGN

Treatment Order

A B C D 1 2 3
1 X X X 11 A B C

2 X X X 2 D A B
Block Rat

3 X X X 3 C D A

4 X X X 4 B C D

(a) (b)

The characteristic feature of Youden squares (which are really rectangles) is
that, as in Latin squares, every treatment occurs in each column, and in any given
column each treatment occurs equally often. In fact the designs are incomplete
Latin squares and the example in Table 1 can be formed by omission of one column
from a 4x4 Latin square. As the columns represent the order in which doses are
given, the means of the columns can be used to judge whether there is any systematic
difference between responses to the first, second and third doses of the day.

Table la shows the basic design employed by Lai (1962), using four rats. Table lb
gives a particular case of Table la. It should be randomized by re-arranging the
order of the rows, and then of the columns in a sequence taken from a table of
random numbers (for example Fisher & Yates, 1957). The resulting design will
still be a particular case of that in Table la.

The treatments are next assigned randomly to the letters. Say, in the present
example, A=_HS, Bz-LS, CHT and DeLT, where HS and LS are the high and
low doses of the standard preparation and HT and LT are the high and low doses of
the test (unknown) preparation. Thus according to the scheme in Table lb the
first rat is given first HS, then LS and finally HT. The second rat is given LT, HS
and LS in that order: and so on.
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The symbols used are:
t=2j Number of treatments
k Number of experimental units per block (responses per rat in the

present example)
r Number of replicates of each treatment
b Number of blocks (rats)

N=tr=bk Number of observations
G Grand total of all responses
D Ratio between successive doses, the same for both standard and

unknown
z Dose
x Log dose.

TABLE 2
APPLICATION OF THE DESIGN SHOWN IN TABLE 1

(a) Results of an assay using the design in Table lb. Responses are expressed as the mean rate of
acid secretion (jPequiv./10 min) (Lai, 1962)

Order

1 2 3 Total
1 HS 2 190 LS 0 975 HT 1P700 4 865

Rat 2 LT 1P570 HS 3 130 LS 1P850 6-550
3 HT 22570 LT 17680 HS 3 000 7-250
4 LS 12150 HT 26275 LT 0 730 47155

Total 7-480 8&060 7-280 22-820

(b) Total and mean responses to each treatment
Total Uncorrected

Treatment response mean
LS 3 975 1P325
HS 8-320 2-773
LT 3-980 1P327
HT 6-545 2 182

22-820

For the results in Table 2: t=4,jj=2, r=3, k=3, b=4 and N=12. The standard
doses were 11.0 and 5.5 ,ug of a purified preparation of hog gastrin, so D=2. The
" unknown" solution was actually made from the same preparation in this assay,
and contained 1,100 uag/ml.; it was given in doses of 0.00750 and 0.00375 ml. The
response was the mean rate of acid secretion (pequiv./10 min).
The computations can be divided into four parts:

Corrected mean responses
To compute, for each treatment, the mean response corrected for the bias introduced

by the differences between rats, the quantity Q is first formed for each treatment.
Qj, the Q for the ith treatment, is defined as

Qi=k (sum of responses for the ith treatment) -
(sum of the block sums for those blocks that contain the ith treatment)
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Use of the values in Table 2 gives
QLS=(3 x 3.975) -(4.865 +6.550+4.155) -3.645
QHS=-(3 x 8.320) -(4.865 +6.550 +7.250)_ 6.295
QLT=(3 x 3.980) -(6.550+7.250+4.155)== -6.015
QHT,-(3 x 6.545) -(4.865 +7.250 +4.155)=- 3.365

The results can be checked by making sure that the sum of the Q's is zero.
The corrected mean response to the ith treatment is, in general,

_(t-l) Qu G
(ye)corr= +N(k-1) N

where GIN is the grand mean of all the responses. This expression can be derived
from the model for the analysis by a least squares multiple regression method (see,
for example, Brownlee, 1960). In the present example

(4 - 1) 22.820
(Y'Ls)corr=12(3 -1) (-3.645)+ 12

-3.645
8 + 1.9017= 1.4460

Similarly
6.295

(YHs)corr- 8 +1.9017=2.6885

-6.015
(5LT)corr= 8 +1.9017= 1.1498

3.365
(YHT)corr= 8 +1.9017=2.3223

These corrected means, and the uncorrected means given in Table 2b, are plotted
in Fig. 1. It can be seen that in this assay the uncorrected response/log dose lines
are seriously non-parallel, but after correction the deviation from parallelism is
insignificant (as indicated by the analysis of variance below) so a valid estimate
of relative potency can be made.

Tests for invalidity. The analysis of variance
Before the result is calculated it should be shown that the assay is not demonstrably

invalid, as is done in the usual analysis of bioassays. Obviously it is impossible to
test for deviation from linearity in a (2+2) assay. However, it has been shown
(Lai, 1962) that, in his gastrin assay, deviation from linearity is not significant over
a range of response wider than that used in the present assay.

The general form of the part of the analysis of variance to be described is shown
in Table 3. The results for the present assay are given in Table 4. The sum of
squares for each source of variability is computed first, and entered in Table 4.
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Fig. 1. Result of gastrin assay on four rats. The abscissa is (x-i) where x=logvF (dose).

The ordinate is response expressed as mean rate of acid secretion (jiequiv./lO min). o0O-
uncorrected treatment means; A - - -A corrected treatment means.

TABLE 3
GENERAL FORM OF PART OF THE ANALYSIS OF VARIANCE

Source of variation
Linear regression
Deviation from parallelism
Between preparations
Deviation from linearity

Between treatments (eliminating blocks)
Between blocks (ignoring treatments)
Between columns
Error (intrablock)

Total

d.f.
1
1
1
t-4
t-1
b-i
k-1

N-b-t-k+2
N-I

Sum of squares
K
H
F
M
D
C
B

E=A-(B+ C+D)
A

TABLE 4
RESULTS OF ASSAY

d.f.
I

Source of variation
Linear regression
Deviation from

parallelism
Preparations

Between treatments
(eliminating rats)

Between rats
(ignoring treatments)

Order of administration
Error (intrablock)

Total

Sum of squares Mean square Variance ratio
3-8881 3-8881 150.0

1 0-0033
1 0-2926

3 4-1840

3
2
3
11

2-0697
0-0821
0-0475
6-3833

0 0033
0-2926

1-3947

0-6899
}0-02592

p
<0-001

0-1273 Notsignif.
11-29 0-05-0-01

53-81 <0-001

(>0-2)

-

w
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(1) The total sum of squares.
G2

A- Sy2--
N

giving, for the results in Table 2,
(22.820)2

(2.1902 +1.5702 + . . . . +0.7302) - 12

=49.7793 -43.3960=6.3833

(2) Sum of squares for variation of response with order of administration.

B
2(column totals)2 G2

b N
This can only be calculated if the design is a Youden square as well as a balanced
incomplete block. The results in Table 2 give

(7.480)2 +(8.060)2 +(7.280)2
4 -~~~43.3960-z0.08214

(3) Sum ofsquares between rats (ignoring treatments).

C E(rat totals)2 G2
k N

giving, for the data of Table 2,
(4.865)2 +(6.550)2 +(7.250)2+(4.l55)2

3

(4) Sum ofsquares between treatments (eliminating effect ofdifferences between rats).
(t-1) £Q2

D- Nk(k -1)
giving, using the values of Q calculated above,

(4-1)
12 x(3 x (3 -1) 3[(3645)2 +(6.295)2 +( -6.015)2 +(3.365)2]=4.1840

This sum of squares can now be split into independent components which provide
the tests for invalidity, as indicated in Table 3. The individual sums of squares are
found via the contrasts which are so defined that, on the null hypotheses that the
slope, deviation from parallelism, etc., are zero, the contrasts would, on the average,
be zero.
The contrasts are computed using the coefficients given, for example, by Finney

(1952, Tables 5.3, 5.4 and 5.7) in combination with the values of Q already found
(rather than, as in ordinary complete block assays, in combination with the total
responses).

(a) Sum of squares due to linear regression. First the regression contrast, LI, is
computed. Using the values of Q found in the present example

L1= -QLs+QHs-QLT+QHT
=3.645 +6.295 +6.015 +3.365= 19.320
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The sum of squares is now found, in general for a (j+j) dose assay, as

(t-1)(L1)2
K cjNk(k-1)

where
2

C-(j2- 1) ifj is even (1)

=2 in the present example,

or c= - if] is odd. (2)
In the present example (j=2)

(L,)2 (19.320)2
K

96 3.8881

(b) Sum of squares due to deviation from parallelism. The deviation from paral-
lelism contrast is, in the present example,

L'1=QLS-QHS-QLT+ QHT
= -0.560

The sum of squares is found using the same equation as for the sum of squares for
regression, but using L', instead of L,. Thus, in the present example,

(_0.560)2
H~~ =0.003396

(c) Sum of squares due to difference in response to standard and unknown prepara-
tions. The between preparations contrast is

L= -QLS-QHS+QLT+QHT
- -5.300

and the sum of squares is, in general,

F (t-l)(Lp)2
2jNik(k -1)

Thus, in the present example,
(-5.300)2 02926

F=- 96
(d) Sum of squares for deviation from linearity. This can be calculated as the

difference between the total sum of squares between treatments and the sum of
the preceding components. When j=2, as in the present example, the difference
should be zero and this provides a check for arithmetical accuracy.
The analysis of variance can now be completed in the usual way. The results

are set out in Table 4. In the present example the variance ratio for " order of
administration" is 0.0410/0.0158-=2.59 with 2 degrees of freedom in the numerator
and 3 in the denominator. Although this corresponds to P>0.2 it is not a small
enough variance ratio to comply with the criterion of Paull (1950) for the pooling
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of variances. However, Lai (1962) has only once detected any apparent difference
between columns in thirty-four assays similar to that described here, and over half
these assays gave variance ratios for " order" of less than 1.0. Also in two larger
(12-rat) assays the variance ratios for " order" were F(2,19)=1.066 and 0.334,
easily complying with Paull's recommendation. In the light of these values it was
decided that there was no reason to believe that response depended at all on the
order of administration of doses and that, in order to increase the power of the
analysis, the sums of squares for columns and for error should be pooled. The
pooled estimate of error thus becomes (0.0821+0.0475)1(2+3) = 0.02592 with
(2+3)=5 degrees of freedom. It is this error variance which is now used to form
the variance ratios in Table 4.

It is seen from Table 4 that there is no reason to consider the assay invalid, so
the potency ratio and its limits of error can now be computed.

The potency ratio
This is calculated from the corrected means for treatments. When the contrasts

L1 and L. are defined as above, the equation for the potency ratio reduces to the
usual form for a (j +j) assay (see, for example, Finney, 1952):

z C
R=-S antilog10[ Lj logor]

T

where R is the potency ratio, ZSIZT is the ratio of standard dose to unknown dose,
c is defined in equations (1) and (2), and

r= V1D ifj is even (3)
= %'-< in the present example,

or r=D if] is odd. (4)
The factor log10r occurs because the calculations have implicitly used the logarithms
to base r of the doses. In the present example this makes both (Xs-X-) and (XT-XT)
take the value -1 for the low doses and + 1 for the high doses (see Fig. 1).
The units of the potency ratio depend on the units used for z5 and ZT. If zS

is in mg (or units) and ZT in ml. then the equation above gives the potency of the
unknown solution directly in mg (or units) per ml. For the present example,
remembering that 2 logV/2=log 2,

11.0 -5.300
R=0007 antilog10[ 19.320 1og102]
= 1,213 izg/ml.

As the true potency of this solution was 1,100 ,pglml. this estimate is about 10% high.

The fiducial limits of the potency ratio
The limits of error computed for the potency ratio are such that if it is consistently

asserted that the true potency of the unknown solution lies between the limits then,
on the average, 95% (or any other chosen proportion) of such assertions will be
correct.
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The limits are computed by means of Fieller's theorem (Fieller, 1944; Finney,
1952, p. 27) which is applied, as usual, to the ratio (YT-Ys)IbC. For a (1+1) dose
incomplete block assay this ratio is equal to cLPIL1, when c, Lp and L1 are defined as
in the previous sections. The theorem can be written:
zI

Limits of R = zsantilog PI St
( -g)VL_+( _L V22 log__rLi0 t'1-)L

where g= bS2 , an index of significance of the slope, bc;

c is defined by equations (1) and (2);
r is defined by equations (3) and (4);

2k(t -1)
va. jN(k -1)

=3/8 in the present example;
k(t-1)

V22cjN(kl)
- 3/32 in the present example.

The estimate of slope, combining data for both preparations and using corrected
responses, is given by

(t-l)L1
b_ cjN(k-1)
- 19.320/32=0.60375 in the present example.

s2 is the error variance from the analysis of variance, that is 0.02592 with 5 degrees
of freedom in the present example.

s = V0.02592==0.16099
t is Student's t (tabulated in, for example, Fisher & Yates, 1957) for the level of

confidence wanted and with the number of degrees of freedom of the error
variance. For P=0.95 and 5 degrees of freedom, t=2.571.

ZS 11.0
ZT 0.0075 1466.67

CLP_ 2( -5.300) -0.54865
Li 19.320

2.5712x0.02592 3
Thus g- (° 5)2 x 320.04407
and (1 -g)=0.9559
As g is small a simplified equation could be used for the limits (Finney, 1952).

However, it is almost as quick to use the full equation. The part in square brackets
of the equation for the limits is

[ -0.54865 0.16099 x 2.571 +095- 3
0.9559 ±0.60375 x 0.9559 (09559 x 32(0.54865)2x 2) 1015SOS

= -0.15352, -0.01926
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and thus
Upper fiducial limit of R --1466.67 antilog (-0.01926)

=1,403 ,ug/ml.
Lower fiducial limit of R -1466.67 antilog (-0.15352)

=1,030 ,ug/ml.
Summarizing, the result of the assay is
Estimated concentration of " unknown " solution 1,213 ,ug/ml.
Error of this estimate +10.3%
Fiducial limits (P=0.95) of estimated concentration 1,030 to 1,403 jug/ml.
that is, expressed as a percentage, -15.1 to +15.7%

DISCUSSION

Replication. In Table lb each dose is given three times and four rats are used. If
greater accuracy is needed eight rats may be used (giving six replicates of each dose)
simply by placing another separately randomized square directly below Table lb.
Every column will now contain each treatment twice. Similarly, by placing three
squares one below the other, a design using twelve rats, and with nine replicates of
each dose, is produced.
When twelve rats are used it is possible to eliminate any (additive) residual effects

of one response on the next by having each dose given second in order preceded
by each other dose given first, and similarly for the dose given third in order. and
second (D. J. Finney, personal communication). Such a modification of the present
design is produced by omitting the last column of a design given by Finney (1952,
Table 10.7, p. 275). In the case of the assay of purified hog gastrin and crude human
gastrin Lai (1962) has shown that residual effects are negligible and that four rats
give adequate accuracy for most purposes. However, in responses to crude hog
gastrin residual effects were quite noticeable, and if it were required to assay this
material the 12-rat balanced design might be useful.

With four rats Lai found the 95 % fiducial limits of the potency ratio were usually
between ± 15 and ±20 %. In a 12-rat assay, using a preparation of known potency,
the potency estimate was only 1.4% in error with fiducial limits of ± 12.3%.

Efficiency of the design. When not all of the treatments can be compared in the
same block the comparisons between block totals will contain a certain amount
of " interblock " information about treatment effects, which has been ignored in
the simple analysis above. The efficiency of a balanced incomplete block design
is, in general, defined as [t(k-1)/k(t-1)] (Yates, 1936), that is about 89% in the
present example. This means that if the error variance in the present example were
the same as the error variance which would be found if all four treatments could
be given to each rat, the variance of comparisons between treatments based on the
latter design would be about 89% of the variance of comparisons based on the
present design. However, since the four treatments cannot be given to each rat,
the incomplete block design is much more efficient than any available alternative.

76



INCOMPLETE BLOCK BIOLOGICAL ASSAY

Recovery of interblock information. When the number of blocks is greater than
the number of treatments (as, in the present example, when more than four rats are
used) an independent estimate of potency can be obtained from the interblock
information about treatment effects. This estimate is combined with the intrablock
estimate already obtained to form a weighted mean potency estimate.
Data from assays based on eight and twelve rats have been further analysed by

splitting the sum of squares for blocks (ignoring treatments) into a treatment
component with (t-1) degrees of freedom and an interblock error with (b-t)
degrees of freedom (see, for example, Fisher & Yates, 1957, Introduction). The
treatment component can then be divided into contrasts in a way analogous with
that used for the sum of squares for treatments eliminating rats. From these
contrasts the interblock potency estimate is computed.

However, because of the initial high efficiency of the particular incomplete block
design used for the gastrin assay, and because of the considerable differences between
rats, no significant amount of information was recovered by the interblock analysis
even when twelve rats were used. Even in far larger assays the interblock estimate
would have so much less weight than the intrablock estimate that it is doubtful
whether its use would, in the case of the gastrin assay, result in any worthwhile
improvement on the simple intrablock estimate of potency described above.

It is possible that in assays based on less efficient designs than that used in the
present example, or in assays where there is not much difference between blocks,
the interblock information might be worth recovering even though its use means
that the fiducial limits for the potency ratio must be based on less universally accepted
theory than that used in the simple analysis. Finney (1952) describes the calculations
for a (3+3) assay with two treatments per block. Bliss (1947) gives the analyses
for two balanced incomplete block designs which are also cross-over designs, with
recovery of interblock information by the more elaborate method of Yates (1940).

I am very grateful to Dr R. C. Elston for his invaluable advice and criticism of the typescript,
to Dr D. J. Finney for his advice in the initial stages and to Dr K. S. Lai for supplying the problem.
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