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Epidemiologists aim to identify modifiable causes of disease, this often being a
prerequisite for the application of epidemiological findings in public health pro-
grammes, health service planning and clinical medicine. Despite successes in
identifying causes, it is often claimed that there are missing additional causes
for even reasonably well-understood conditions such as lung cancer and coronary
heart disease. Several lines of evidence suggest that largely chance events, from
the biographical down to the sub-cellular, contribute an important stochastic
element to disease risk that is not epidemiologically tractable at the individual
level. Epigenetic influences provide a fashionable contemporary explanation for
such seemingly random processes. Chance events—such as a particular lifelong
smoker living unharmed to 100 years—are averaged out at the group level. As a
consequence population-level differences (for example, secular trends or differ-
ences between administrative areas) can be entirely explicable by causal factors
that appear to account for only a small proportion of individual-level risk. In
public health terms, a modifiable cause of the large majority of cases of a disease
may have been identified, with a wild goose chase continuing in an attempt to
discipline the random nature of the world with respect to which particular indi-
viduals will succumb. The quest for personalized medicine is a contemporary
manifestation of this dream. An evolutionary explanation of why randomness
exists in the development of organisms has long been articulated, in terms of
offering a survival advantage in changing environments. Further, the basic notion
that what is near-random at one level may be almost entirely predictable at a
higher level is an emergent property of many systems, from particle physics to the
social sciences. These considerations suggest that epidemiological approaches will
remain fruitful as we enter the decade of the epigenome.

We cannot imagine these diseases, they are called
idiopathic, spontaneous in origin, but we know
instinctively there must be something more, some
invisible weakness they are exploiting. It is impossible
to think they fall at random, it is unbearable to
think it.

James Salter, Light Years, 1975

Epidemiology is concerned with the identification of
modifiable causes of disease, which is often a pre-
requisite for the application of epidemiological

findings in public health programmes, health service
planning and clinical medicine.1 Despite many suc-
cesses, even with respect to the most celebrated—
such as the identification of cigarette smoking as a
major cause of lung cancer and other chronic dis-
eases—it can appear that much remains to be done.
Consider Winnie, lighting a cigarette from the candles
on her centenary birthday cake, who, after 93 years
of smoking, is not envisaging giving up the habit
(Figure 1). Such people, who survive to a ripe old
age despite transgressing every code of healthy
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living, loom large in the popular imagination2 and are
reflected in the low positive predictive values and C
statistics in many formal epidemiological prediction
models. In general, epidemiologists do a rather poor
job of predicting who is and who is not going to de-
velop disease.

This apparent failing of epidemiology has long been
recognized. Writing about ischaemic heart disease
(IHD) 40 years ago, Tom Meade and Ranjan
Chakrabarti reported that ‘within any risk group, pre-
diction is poor; it is not at present possible to express
individual risk more precisely than as about a 1 in 6
chance of a hitherto healthy man developing clinical
IHD in the next 5 years if he is at high risk’.3 This
poor prediction of individual risk indicated that there
was ‘a pressing need for prospective observational

studies in which new risk factors are identified’.3

Many such calls followed over the succeeding dec-
ades, with funding applications often beginning
with a statement that ‘identified risk factors account
for only 30% of IHD risk’, before proposing the expen-
sive exploration of novel putative causes of the dis-
ease.4 I have certainly promulgated such views in the
(usually unsuccessful) pursuit of pounds or dollars,
although the exact percentage of ‘explanation’ by es-
tablished causes would fall and rise in relation to
degree of desperation. The most feted contemporary
candidate for better prediction is probably genetics.
With the perception (in my view exaggerated) that
genome-wide association studies (GWASs) have
failed to deliver on initial expectations,5 the next
phase of enhanced risk prediction will certainly shift

Figure 1 Winnie ain’t quitting now
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to ‘epigenetics’6,7—the currently fashionable response
to any question to which you do not know the
answer.

As epidemiologists attempt to come to terms with
‘personalized medicine’ and individual risk predic-
tion,8 they may want to consider how cognate discip-
lines concerned with individual trajectories address
these issues. For example, in the study of criminality
it has been suggested that ‘the concept of cause inev-
itably involves the concept of change within individ-
ual units’.9 One response to poor epidemiological
prediction of individual outcomes is to consider that
the framework of lifecourse epidemiology offers a
solution: if only we collected better data on what hap-
pens to people from before birth and then throughout
their lives we could better understand their ultimate
fate. In a recent book entitled, ‘Epidemiological methods
in lifecourse research’10 a chapter offers to tell us about
‘Measurement and design for life course studies of
individual differences and development’.11 The sug-
gestion is that the individual can indeed be the
target of epidemiological understanding, and the life-
course approach offers us a path towards this goal.

The issues that confront epidemiologists regarding
understanding the trajectories and outcomes for indi-
viduals are ones that other disciplines also struggle
with. For example, Stanley Lieberson and colleagues
consider that their fellow sociologists are ‘barking
up the wrong branch’12 when becoming involved in
discussions of prediction of particular events. In this
paper I attempt to bring together considerations from
several fields of investigation—from behavioural
genetics, genomics, epigenetics, evolutionary theory,
epidemiology and public health—to illustrate why
we should abandon any ambitions towards individua-
lised prediction—as codified in personalized medicine,
if we want to succeed as population health scientists.
This involves initial discussion of issues—such as the
notion of the non-shared environment—that may not
be familiar to epidemiologists. However triangulation
of the different disciplinary understandings is, I think,
considerably more powerful than only engaging with
the theoretical background of one approach, and I
hope worth the effort.

Same origins, different outcomes
Lifecourse epidemiology has been defined as ‘the
study of the effects on health and health-related out-
comes of biological (including genetic), environmental
and social exposures during gestation, infancy, child-
hood, adolescence, adulthood and across gener-
ations’.13 Family-level influences during gestation,
infancy, childhood and adolescence are likely to be
shared by siblings reared by the same parents, and
are targets for epidemiological investigation. A large
number of studies have, for example, examined the
association of socio-economic circumstances in
early life with later morbidity and mortality.14,15 The

indicators used—such as occupational social class of
the head of household—would generally be the same
for different siblings from the same family. Exposures
of this kind are, in the terminology popularized
within behavioural genetics, shared (or common) en-
vironmental factors. It is therefore perhaps surprising
that the groundbreaking 1987 paper by Robert Plomin
and Denise Daniels,16 ‘Why are children in the same
family so different from one another?’, recently re-
printed with commentaries in the IJE,17–21 has appar-
ently had little influence within epidemiology. The
implication of the paper—which expanded upon an
earlier analysis22—was that, genetics aside, siblings
are little more similar than two randomly selected
individuals of roughly the same age selected from
the source population that the siblings originate
from. This may be an intuitive observation for many
people who have siblings themselves or have more
than one child. Arising from the field of behavioural
genetics, the paper focused on measures of child be-
haviour, personality, cognitive function and psycho-
pathology, but, as Plomin points out, the same basic
finding is observed for many physical health out-
comes: obesity, cardiovascular disease, diabetes,
peptic ulcers, many cancers, asthma, longevity and
various biomarkers assayed in epidemiological stu-
dies.18 These findings come from studies of twins,
adoptees and extended pedigrees, in which the vari-
ance in an outcome is partitioned into a genetic com-
ponent, the contribution of common environment (i.e.
that shared between people brought up in the same
home environment) and the non-shared environment
(i.e. exposures that are not correlated between people
brought up in the same family). The shared environ-
ment—which is the domain of many of the exposures
of interest to lifecourse epidemiologists—is reported
to make at best small contributions to the variance
of most outcomes. The non-shared environment—ex-
posures which (genetic influences apart) show no
greater concordance between siblings than between
non-related individuals of a similar age from the
same population—constitute by far the dominant
class of non-genetic influences on most health and
health-related outcomes (Box 1). Table 1 presents
data from a large collaborative twin study of 11
cancer sites, with universally large non-shared envir-
onmental influences (58–82%), heritabilities in the
range 21–42% (excluding uterine cancer, for which a
value of 0% is reported) and smaller shared environ-
mental effects, zero for four sites and ranging from
5% to 20% for the remainder.23 Many other diseases
show a similar dominance of non-shared over shared
environmental influences.18 Indeed, a greater non-
shared than shared environmental component ap-
pears to apply to some,24–28 although not all,29

childhood-acquired infections and the diseases they
cause. This is such a counter-intuitive observation
that one commentator on an earlier draft of this
paper used childhood infectious disease epidemiology
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as an example of a situation in which the shared en-
vironment must be dominant.

This basic conclusion seems to be that in the search
for modifiable influences on disease the focus should
be on factors that are unrelated to shared family
background. This would appear to have important
implications for epidemiology, as well as for social
and behavioural sciences. However, as Neven
Sesardic points out, even within behavioural genetics
the central, rather momentous, finding regarding the
apparently small or non-existent contribution of
family background to child outcomes went under-
appreciated; it was ‘an explosion without a bang’.19

Attempts at popularizing its message—such as Judith
Rich Harris’ book The Nurture Assumption,30 which was
headlined as saying parenting does not matter to chil-
dren—may have simply increased the unwillingness
of some researchers to come to terms with the key
message regarding the importance of the non-shared
environment (See Box 1).

For epidemiologists, the fact that the generally small
shared environmental influences on many outcomes
appeared to get even smaller (or disappear com-
pletely) with age—as is seen, for example, with re-
spect to body mass index and obesity31—increases the
relevance of the message, since later life health out-
comes are often what we study. Yet, within epidemi-
ology, the impact of this work has been minimal; of
the 607 citations of the Plomin and Daniels paper on
ISI Web of Science (as of May 2011), only a handful
fall directly within the domain of epidemiology or
population health. In the recent book, Family Matters:
Designing, Analysing and Understanding Family-based
Studies in Lifecourse Epidemiology,32 the issue is barely
touched upon; the balanced one page it receives near
the end of the 340-page book being perhaps too little,
too late.33 Between-sibling studies as a way of con-
trolling for potential confounding have been widely
discussed within epidemiology, both in the book in
question34 and elsewhere.35,36 Certainly, this is a
useful method for taking into account shared aspects
of the childhood environment. But if shared environ-
ment has little impact on many outcomes then, on
the face of it, the approach might be missing the
issue of real concern—the more important non-
shared environmental factors. Despite this, the use
of sibling controls sometimes appears to uncover

Box 1 Shared and non-shared
environments: what’s in a name?

The terminology of shared and non-shared envir-
onments is not a familiar one within epidemiology,
and such formulations are used in subtly different
ways in the various social and behavioural sciences
within which they have been evoked. In the con-
text of classic twin studies, the shared environmen-
tal factors are those that make twins alike, and
the non-shared environmental factors (sometimes
referred to as the ‘unique environment’) are those
that make twins different. In some contexts, what
twins appear to share (for example, damp housing
and mould on the walls) could either make them
more similar—by providing a common exposure
with an on-average main effect on a disease out-
come—or more different, if a non-shared factor,
such as cigarette smoking, strongly interacted
with the shared exposure, leading to greatly diver-
gent risks of disease in the presence of the shared
exposure, but less divergence in its absence. With
enough ingenuity it is possible to produce stories in
which any exposure could either increase or
decrease twin (or sibling) similarity. The mystery
remains, however, that there appear to be a greater
preponderance of difference-generating rather than
similarity-generating exposures in the environ-
ments that twins (and other siblings) share.

The terms shared and non-shared environment
will be used frequently in this paper. A variety of
partially overlapping subcategorizations will also be
encountered.

� The shared environment may have both objective
and effective aspects84; the effective element refer-
ring to how environments influence a particular
person. In this sense the same objectively assessed
exposure (e.g. emigration) may be experienced
differently by two siblings, with one of them
benefiting from the process and the other being
adversely affected. The effective aspect of the
shared environment could then act as a non-
shared exposure, and be considered to generate
non-shared effects from a shared exposure.
� The non-shared environment has both systematic

and non-systematic elements. Systematic differ-
ences are generally ones that can be more
easily measured (and the term measured non-
shared environment is used to refer to directly
measured exposures as opposed to the quantita-
tive estimation of non-shared environmental
influences from behavioural genetics models).
Systematic aspects of the non-shared environ-
ment include such factors as birth order,
season of birth, sibling-sibling interactions, dif-
ferential parental treatment and peer groups;
factors that can systematically differ between
siblings and may in principle be measured
and studied. Non-systematic aspects include

accidents, chance events and other life events
that would be difficult to assess and analyse in
most study settings.
� Both shared and non-shared environmental

effects may be either stable or unstable. Stable
factors tend to track over time—such as smoking
behaviour—whereas the existence and/or influ-
ence of unstable environmental factors changes
to a considerable extent over time.
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substantial confounding. For example, maternal
smoking during pregnancy was found in a large
Swedish study to be associated with lower offspring
IQ, even after adjustment for many potential con-
founding factors.37 In a between-sibs comparison,
however, there was no association of maternal smok-
ing with IQ of offspring, which the authors inter-
preted as indicating that the association seen for
unrelated individuals was due to residual confound-
ing. If shared environment is of such little import-
ance, how can it generate meaningful confounding
in epidemiological studies? We will return to this
issue later.

Why are siblings so different?
Plomin and Daniels provided a catalogue of factors
that could contribute to the large non-shared envir-
onmental effects impacting on many outcomes. An
important concern was that in the statistical models
used to estimate non-shared environmental effects,
these usually come from subtraction: the non-shared
environmental component being the remaining vari-
ance, after estimated genetic and shared environmen-
tal contributions have been taken into account.
Measurement error would therefore appear as a
non-shared environmental influence. A second possi-
bility was that non-systematic aspects of the non-
shared environment—essentially chance or stochastic
events—could lead to children from the same family
having very different trajectories throughout life. This
was illustrated by the biography of Charles Darwin; if
it were not for apparently chance events he would not
have been present on the voyage of the Beagle, and we
would probably be celebrating Alfred Russell Wallace
as the founder of the theory of natural selection.
Indeed, the narratives of people’s lives often

emphasize serendipity and misfortune at crucial turn-
ing points that apparently had a major influence on
their trajectories. The possibility that it was such
non-shared ‘stochastic events that, when com-
pounded over time, make children in the same
family different in unpredictable ways’16 was, how-
ever, considered by Plomin and Daniels as ‘a gloomy
prospect’ since it was ‘likely to prove a dead end for
research’.16 Possible systematic sources of differences
within families were considered a more promising
avenue for future investigation.

Several categories of such systematic non-shared en-
vironmental influences were identified that could in-
fluence different outcomes in children from the same
family. Some characteristics are clearly not shared by
siblings, such as gender in gender-discordant sibships,
birth order or season of birth. Sib–sib interactions
generate different experiences for the participants
involved, parental treatment of siblings may be
more different than parents realize and there are ex-
tensive networks outside the family that provide
unique experiences (in 1987 Plomin and Daniels men-
tioned peer groups, television and teachers;16 in 2011
the role of the internet, social networking and mobile
communications in allowing one sibling to differenti-
ate themselves from another might receive more
emphasis).

An extensive research programme in the behavioural
and social sciences consequent on the Plomin and
Daniels review focused on the direct assessment of
effects of the systematic aspect of the non-shared en-
vironment. Instruments were developed to collect de-
tailed data on sibling-specific parenting practice, sib–
sib interactions and the influence of schools and peer
groups, and studies including more than one child per
family were explicitly established to allow investiga-
tion of why siblings differ. However, a decade ago,

Table 1 Effects of heritable and environmental factors on cancers at various sites, according to data from the Swedish,
Danish and Finnish Twin Registries.23 Proportion of variance (95% CI)

Site or type Heritable factors
Shared

environmental factors
Non-shared

environmental factors

Stomach 0.28 (0–0.51) 0.10 (0–0.34) 0.62 (0.49–0.76)

Colorectum 0.35 (0.10–0.48) 0.05 (0–0.23) 0.60 (0.52–0.70)

Pancreas 0.36 (0–0.53) 0 (0–0.35) 0.64 (0.47–0.86)

Lung 0.26 (0–0.49) 0.12 (0–0.34) 0.62 (0.51–0.73)

Breast 0.27 (0.04–0.41) 0.06 (0–0.22) 0.67 (0.59–0.76)

Cervix uteri 0 (0–0.42) 0.20 (0–0.35) 0.80 (0.57–0.97)

Corpus uteri 0 (0–0.35) 0.17 (0–0.31) 0.82 (0.64–0.98)

Ovary 0.22 (0–0.41) 0 (0–0.24) 0.78 (0.59–0.99)

Prostate 0.42 (0.29–0.50) 0 (0–0.09) 0.58 (0.50–0.67)

Bladder 0.31 (0–0.45) 0 (0–0.28) 0.69 (0.53–0.86)

Leukaemia 0.21 (0–0.54) 0.12 (0–0.41) 0.66 (0.45–0.88)
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a meta-analytical overview of such studies concluded
that there was little direct evidence of important in-
fluences of specific non-shared environmental charac-
teristics on behavioural and social outcomes mainly
assessed during the first two decades of life.38 At
best, only small proportions of the phenotypic vari-
ance attributed to the non-shared environment
related to directly measured influences. The effects
were rarely statistically robust and the median value
of the proportion of variation accounted for was �3%.
In the behavioural genetic studies, estimates of the
proportion of the overall phenotypic variance ac-
counted for by the non-shared environment are
almost always over 50%, and often substantially so;
similar findings apply to cancers (Table 1). There are
more optimistic assessments of the current status of
studies directly assessing the effects of non-shared
environment,18,39 but in these the magnitude of the
effects appears small. In an example presented in
Plomin’s assessment of three decades of research on
this issue18 non-shared aspects of maternal negativity
does have a statistically robust association with off-
spring depressive symptoms, but accounts for only
around 1% of the variance.40

In the epidemiological field there has been relatively
little focused investigation of measured aspects of the
non-shared environment on disease or disease-related
phenomenon. The exception is mental health, parti-
cularly in early life, where at best small effects have
been identified.18 Birth order has been strongly advo-
cated as an important contributor in the psychological
arena,41 but this does not stand up to scrutiny.42 In
the health field associations are generally non-
existent or small and when found often not robust,
potentially reflecting confounding.43–48 Season or
month of birth, which will generally differ between
siblings, has been studied in relation to various—
mainly psychiatric—health outcomes, and could
reflect either biological processes (such as in-utero
or early postnatal infections for seasonally variable
infectious agents) or social processes, such as exact
age at school entry and relative age within a school
year. Effects are intriguing, but are variable, of low
magnitude, and generally far from robust.49,50 The
identified influence of particular aspects of the mea-
sured non-shared environment on health outcomes
are, at best, weak in the medical field, and contrast
with the large contribution that the non-shared envir-
onment appears to make in quantitative genetics
analyses.

An issue with much epidemiological research is
that adulthood environment is clearly of considerable
potential importance. Similarities between siblings for
adulthood environment will be less than for child-
hood environment. Much of the behavioural genetics
literature is concerned with developmental outcomes
assessed in childhood adolescence, or young adult-
hood. In these cases, the apparently small shared
and large non-shared environmental components are

seen during a period when siblings will usually have
remained in the same household. For those
health-related outcomes that have been assessed
throughout life—such as obesity and body mass
index—the non-shared environmental component is
large from childhood to late adulthood, and the
shared environmental contribution, evident in young
childhood, declines to a small fraction by puberty, and
remains either undetectable or small right through
into old age.51 Systematic aspects of the non-shared
environments of adults that have large effects on dis-
ease outcomes may await identification. However, the
inability to identify such effects using intensive as-
sessments of exposure and outcomes in childhood is
sobering. Furthermore, in longitudinal twin studies,
in which twin pairs have repeat assessments, the gen-
eral finding is that the non-shared environmental
variance at one age overlaps little with that at a
later age—i.e. there appear to be unique and largely
uncorrelated factors acting at different ages. For ex-
ample, with respect to body mass index, the
non-shared environmental components at age 20,
48, 57 and 63 years are largely uncorrelated with
each other.52 This suggests that exposures contribut-
ing to non-shared environmental influences are often
unsystematic and of a time- or context-dependent
nature. Similar findings have emerged from studies
of various other outcomes, with non-shared environ-
mental influences contributing little, if anything, to
tracking of phenotypes over time.53 A distinction
can be drawn between the stable and unstable aspects
of the non-shared environment, with studies tending
to point to the latter as being of more statistical
importance in terms of explaining variance in the
distribution of disease risk. This is a crucial issue,
since some environmental exposures which are
partly non-shared in adulthood (such as cigarette
smoking and occupational exposures) tend to track
over time—and thus be stable components of the
non-shared environment.

Currently, there is largely an absence of evidence—
rather than evidence of absence—of directly assessed
systematic non-shared environmental influences on
health, and little active research in the biomedical
field. However, as the phenotypic decomposition of
variance shows similar patterns in the medical, be-
havioural and social domains, it seems prudent to
assume that similar causal structures exist, and
equivalent conclusions should be drawn: a large com-
ponent of variation in health-related traits cannot be
accounted for by measureable systematic aspects of
the non-shared environment.

Why might the role of shared
environment be under-estimated?
The contribution of the shared environment to out-
comes may be being under-estimated by current

542 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY



approaches. In his IJE commentary Dalton Conley20

summarizes potential problems with the genetic
models from which estimates of the contribution of
the shared environment have been made, such as the
assumption that twins have the same level of envir-
onmental sharing independent of zygosity. Conley,20

Turkheimer21 and Plomin18 all refer to the low pro-
portion of the estimated heritability of many traits
that can be accounted for by identified common gen-
etic variants in GWASs, and the apparent mystery
of the ‘missing heritability’,54 possibly indicating
that heritability has been over-estimated by conven-
tional twin studies. Many features of twin study ana-
lysis can be problematic. For example, twin study
analysis often assumes that genetic contributions are
additive, and that genetic dominance (in the classic
Mendelian sense) or gene–gene interactions (epista-
sis) do not contribute to the genetic variance. Such
an assumption can lead to under-estimation of the
shared environmental component.55–57 Conversely,
twin studies also assume no assortative mating (i.e.
parents are no more genetically similar than if ran-
domly sampled from the population) and no gene–
environment covariation, both of which can lead to
over-estimation of the shared environmental compo-
nent.55 Different study designs for estimating compo-
nents of phenotypic variation make different
assumptions, however. Conventional twin studies,
studies of twins reared apart, extended twin-family
studies (in which other family members are
included), other extended pedigree studies and adop-
tion studies (including those in which there is quasi-
random assignment of particular adoptees) generally
come to the same basic conclusions about the relative
magnitude of these components.58 All these designs
have been applied to the study of body mass index
and obesity, with the findings indicating roughly the
same magnitude of heritability.55,59–64 This makes it
less likely that these are seriously biased, because dif-
ferent biases would all have to generate the same ef-
fects, which is not a plausible scenario.

With respect to the ‘missing heritability’, to take the
example of height—referred to by both Plomin18 and
Turkheimer25—the estimate of the proportion of her-
itability explained by identified variants they give, of
<5%, has already increased to 410%,65 and directly
estimated heritability (relating phenotypic similarity
to stochastic variation in the proportion of the
genome shared between siblings) indicates similar
heritabilities to those seen in twin studies.66

Genome-wide prediction using common genetic varia-
tion across the genome also points to the effects of
measured genetic variation moving towards the
expectation from conventional heritability estimates.67

Such data suggest there are large numbers of variants
as yet not robustly characterized that are contributing
to the heritability of height, with rare variants not
identifiable through GWAS probably accounting for
much of the remainder. For some diseases, a more

considerable proportion of the heritability is already
explained by common variants.68 In summary, it
seems improbable that heritability has been substan-
tially over-estimated at the expense of shared envir-
onment. The basic message that a larger non-shared
than shared environmental component to phenotypic
variance is the norm is unlikely to be overturned.

Shared environmental effects, although generally
small, are more substantial for some outcomes,
including musical ability69 and criminality in adoles-
cents and young adults;70 respiratory syncytial virus
infection,29 anti-social behaviour,53,71 mouth ulcers72

and physical activity73 in children and lung function
in adults.74 Furthermore, findings with respect to
shared environmental contributions have face validity.
For example, in a twin study applying behavioural
genetic variance decomposition to behaviours, dis-
positions and experiences, shared environmental
effects were found for only 9 of the 33 factors inves-
tigated.75 However, they were identified for those as-
pects of life that would appear to depend on shared
family characteristics, for example, for a child being
read to by a parent, but not for the child reading
books on their own. Similarly, the number of years
a child had music lessons had a substantial shared
environmental component, as might be expected as
this will initially depend on the parents organizing
such lessons. Continuing to play an instrument into
adulthood, however did not have an identified shared
environmental contribution. Strictness of parenting
style and parental interest in school achievement
also had shared environmental contributions, demon-
strating that differences in perceptions and reporting
styles of the twins do not prevent the identification of
such effects. Together, this evidence makes it clear that
the methods currently applied can identify the exist-
ence of shared environmental effects when they are
present.

Shared environmental effects could be under-
appreciated because of the limited range of shared
environments in study samples, arising through both
initial recruitment methods and sample attrition.76

Shared environmental influences on various out-
comes have been found to be greater in high-risk
families16,77: ones that often have low recruitment
and retention rates in population-based studies.
Measurement error in the classification of directly
measured shared influences, in particular those that
change over time, can lead to under-estimation of ef-
fects when they are directly studied.

Shared environmental influences within twin and
related studies generally apply to infancy, childhood,
adolescence and early adulthood and not to later
adulthood experiences. Thus, they would encompass
many of the aspects of the early life environment—
from the antenatal period onwards—that are con-
sidered to be important potential contributors to
adult disease within the developmental origins of
health and disease (DOHaD) arena. Furthermore,
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many of the factors that are components of the
shared environment are ones that are candidate influ-
ences on adulthood health—for example, housing
conditions, characteristics of area of residence, envir-
onmental tobacco smoke exposure, socio-economic
circumstances, disruptive social environments and
other stressors. Their effects in adulthood would not
be expected to be greater than their effects during the
sensitive developmental periods of infancy, childhood,
adolescence and young adulthood. Shared environ-
ment can be addressed through analysis of spousal
similarities in health outcomes, as environments are
shared to an extent by cohabiting couples, and these
also yield what on the face of it are rather small effect
estimates. For example, the cross-spousal correlation
for body mass index does not change from when cou-
ples initially come together (reflecting assortative
mating) over many years of them living together in
an at least partially shared environment.61

Of most relevance to epidemiological approaches,
however, is that models generally fix the shared en-
vironmental component to zero if it is not ‘statistically
significantly’ different from zero. This is evident
in Table 1; with respect to pancreatic cancer, for ex-
ample, the shared environmental component is given
as 0, with a 95% confidence interval (CI) 0–0.35 (i.e.
the upper limit being 35% of phenotypic variance). In
many cases, it is simply stated that these studies find
no effect of shared environmental influences, even
though the findings are compatible with quite sub-
stantial contributions, but these cannot be reliably
estimated in the generally small samples available in
twin and adoption studies. Thus, a twin study of
aortic aneurysm reported that there was ‘no support
for a role of shared environmental influences’,78 with
the 95% CI around the effect estimate being 0–27%. A
recent meta-analysis found that for various aspects of
child and adolescent psychopathology, shared envir-
onment makes a non-negligible contribution in ad-
equately powered analyses.79 The claims of there
being ‘no shared environmental influence’, which
are often made (Box 2), might more realistically be
seen as an indication of inadequate sample size and
the fetishization of ‘statistical significance’.80

Reasons for over-estimating or
over-interpreting the non-shared
environment
As already mentioned, measurement error in quanti-
tative genetic models is generally categorized as being
part of the non-shared environment and this will lead
to over-estimation of this aspect of environmental
influence on outcomes. Interaction between the
non-shared environment and genotype if not mod-
elled can lead to over-estimation of the non-shared
environmental effects.81 However correlation between
genetic variation and the non-shared environment if

not modelled can lead to inflation of the additive
genetic component and deflation of the non-shared
environment estimates.81 Such correlation is likely to
exist between genetic variation and the non-shared
aspects of alcohol consumption, for example,82 and
the same is likely to be the case for smoking.83

Finally, the effect of an apparently shared environ-
mental factor could qualitatively differ according to
characteristics of the siblings. Thus parental divorce
can be considered to be a shared environmental in-
fluence (it will be reported as having happened for all
siblings) and yet its effect on different offspring may
be highly disparate, with some offspring suffering
adverse consequences of family fracturing, whereas
other offspring are benefited by escaping from a
conflictive household environment. In this scenario
there would be non-shared effects of the shared

Box 2 The persistent claims for there
being no shared environmental
influences

In an entertaining paper, Eric Turkheimer proposed
three laws of behavioural genetics, which can be
modified for the health sciences as:

First Law: All human health and health-related
traits are heritable.

Second Law: The effect of being raised in the same
family is smaller than the effect of genes.

Third Law: A substantial portion of the variation
in health and health-related traits is not accounted
for by the effects of genes or families.170

In many cases, reports have explicitly stated that
there is no contribution of the shared environment
to outcomes. For example, one representative study
concludes that ‘In agreement with other twins stu-
dies of asthma and hay fever, no shared environ-
mental influences were detected; in other words,
factors related to home and family environment
do not seem to contribute to the variance in
asthma and hay fever liabilities’.171 Other stu-
dies—generally of children, adolescents or young
adults, but some extending to later ages—have
explicit statements of there being no shared envir-
onmental influences for amongst others, schizo-
phrenia,172 bipolar affective disorder,173 blood
pressure,174 aortic aneurysm,78 sleep characteris-
tics,175 general cognitive ability,176 teacher-rated
aggression,177 extraversion and neuroticism,178

atypical gender development in girls,179 stutter-
ing,180 age at first sexual intercourse in young
men,181 autism traits182 and aversion to new
foods.183 In many of these cases confidence inter-
vals around the ‘zero shared environmental influ-
ences’ are not provided, but when given they are
often compatible with an effect magnitude that
would be epidemiologically relevant.
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environment, with influences being due to ‘effective
environments’ rather than ‘objective environments’.84

This could lead to an exposure having no detectable
overall effect in a population, but still having a causal
influence in particular cases.4

The ‘gloomy prospect’ after all?
The possibility that chance or stochastic events
contribute to the large non-shared environmental
component for many outcomes was not dismissed
by Plomin and Daniels because of evidence against
it, rather it was not considered a promising research
topic.16 Indeed, in a reply to commentators on their
original article, they stated that they ‘did not mean to
minimize the possible importance of such events’ but
that it ‘makes sense to start the search by looking for
systematic sources of variance’.85 There is perhaps a
reflection here of the story of the drunken man found
searching for his keys under a street lamp, who when
asked where he had dropped the keys gestured to a
distant location, but said he was looking where the

light was. If biographical narratives often hinge on
chance events, why should the reasons behind the
development of one particular case of disease be any
less influenced by such events? Perhaps, like the poet
Fausto Maijstral in Thomas Pynchon’s novel V, we
need to begin ‘the process of learning life’s single
lesson: that there is more accident to it than a man
can ever admit to in a lifetime and stay sane’.86

The stochastic nature of phenotypic development is
something we should not be surprised to encounter
(Box 3). In his 1920 paper, ‘The relative importance of
heredity and environment in determining the piebald
pattern of guinea pigs’, Sewall Wright (Figure 2) pre-
sented a seminal path analysis (Figure 3), that has
frequently been cited as a source of this particular
statistical method.87 Wright observed that ‘nearly all
tangible environmental conditions—feed, weather,
health of dam, etc., are identical for litter mates’; in
current terminology, they are part of the shared en-
vironment. Such factors were found to be of minor
importance; instead, most of the non-genetic variance
‘must be due to irregularities in development due to
the intangible sort of causes to which the word

Box 3 Henry Maudsley on the gloomy
prospect

The pioneering psychiatrist Henry Maudsley was
present at a meeting of the newly founded
Sociological Society in April 1904 when Sir
Francis Galton talked on ‘Eugenics: its definition,
scope and aims’,184 and considered how siblings
‘born of the same parents and brought up in the
same surroundings’ could become so different. He
concluded that in his opinion ‘we shall have to go
far deeper down than we have been able to go by
any present means of observation—to the germ-
composing corpuscles, atoms, electrons, or what-
ever else there may be; and we shall find these
subjected to subtle and most potent influences of
mind and body during their formations and com-
binations, of which we yet know nothing and
hardly realise the importance.’185 Here he is
describing how heritability (‘germ-composing cor-
puscles’) and factors that would be subsumed
under the non-shared environment could come
together and that ‘in these potent factors the solu-
tion of the problem is to be found’.186 In his reply
Galton was scathing.186 Referring to a discussion
that included spoken or written contributions
from George Bernard Shaw, H.G. Wells and
William Bateson he declared himself unhappy
with the quality of the debate, with two speakers
that seemed to him ‘to be living forty years ago;
they displayed so little knowledge of what has been
done since’, others that ‘were really not acquainted
with the facts, and they ought not to have spoken
at all’.

Figure 2 Sewall Wright (1889–1988). Source: Sewall
Wright and Evolutionary Biology154
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chance is applied’.87 Wright pointed out that meas-
urement error could not be separated from this intan-
gible variance, as is the case with non-shared
environment in current parlance. In a later paper,88

Wright and his PhD student Herman Chase independ-
ently graded the guinea pig coat patterns, and demon-
strated that measurement error was only a minor
contributor (Figure 4). A summary table (Table 2)
included a shared environmental influence on litter-
mates—age of the mother—but the intangible vari-
ance dominated, with the estimate of the magnitude
of this being similar to estimates seen for the

contribution of the non-shared environment in rela-
tion to many human traits.16 In humans, of course,
age of mother at conception could be a non-shared
environmental factor influencing differences between
siblings. In the inbred guinea pig strain, where gen-
etic differences were minor, heredity was not an issue,
and the intangible (‘non-shared environmental’) fac-
tors were even more dominant.

Evidence of the importance of chance is abundant
in the life histories of many creatures. In genetically
identical Caenorhabditis elegans reared in the same en-
vironments there are large differences in age-related

Figure 3 Random phenotypic variance? Sewall Wright’s path analysis of the Piebald pattern in guinea pigs87

Figure 4 Source: Sewall Wright and Evolutionary
Biology154

Table 2 The ‘approximate analysis of the variance in the
random bred stock and isogenic inbred strain’.88 Percentage
of variance in coat pattern of guinea pigs attributable to
different components

Isogenic
inbred
strain

Random
bred
stock

Heredity 0 40

Sex 3 2

Environment

Age of mother 4
6

�
Other factors common

to littermates
4

Factors not common
to littermates

89 52

100 100
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functional declines, attributable to purely stochastic
events.89 In the case of genetically similar inbred
laboratory rats, Klaus Gärtner noted the failure to
materially reduce variance for a wide variety of
phenotypes, despite several decades of standardizing
the environment.90,91 Indeed, there was hardly any
reduction in variance compared with that seen in
wild living rats experiencing considerably more vari-
able environments. The post-natal environment, con-
trolled in these studies, seemed to have a limited
effect on phenotypic variation. Embryo splitting and
transfer experiments in rodents and cattle demon-
strated that the prenatal environment was also not
a major source of phenotypic variation.90,91 In genet-
ically identical marbled crayfish raised in highly con-
trolled environments considerable phenotypic
differences emerge.94 These and numerous other ex-
amples from over nearly a century87,93–98 demonstrate
the substantial contribution of what appear to be
chance or stochastic events—which in the behavioural
genetics field would fall into the category of
non-shared environmental influences—on a wide
range of outcomes. Finally, even in fully deterministic
settings, it has been pointed out that non-linear as-
pects of autonomous epigenetic processes could gen-
erate phenotypic differences that cannot be attributed
to either genetic or environmental influences; these
have thus been termed ‘a third source of developmen-
tal difference’.99,100

As a thought experiment, imagine a lifecourse epi-
demiologist diligently recording every possible aspect
of behaviour, environment and biomarker status of
genetically identical marbled crayfish (Figure 5).
These data are then used to predict outcomes with
the usual epidemiological modelling approaches.
How much of the variation in outcomes is our in-
trepid researcher going to be able to explain?

Mechanisms of chance events:
epigenetics to the rescue?
The chance events that contribute to disease aetiology
can be analysed at many levels, from the social to the
molecular. Consider Winnie (Figure 1); why has she
managed to smoke for 93 years without developing
lung cancer? Perhaps her genotype is particularly re-
silient in this regard? Or perhaps many years ago the
postman called at one particular minute rather than
another, and when she opened the door a blast of
wind caused Winnie to cough, and through this dis-
lodge a metaplastic cell from her alveoli? Individual
biographies would involve a multitude of such events,
and even the most enthusiastic lifecourse epidemi-
ologist could not hope to capture them.101 Perhaps
chance is an under-appreciated contributor to the epi-
demiology of disease.4,102,103

In model organism studies trait deviations due to
developmental noise tend to be independent of one
another,104 reflecting the generally non-stable

characteristics of non-shared environmental influ-
ences on human traits discussed above. The stochastic
nature of many subcellular processes related to gene
expression that could influence development, pheno-
typic trajectory and disease have been extensively
documented.93,97,105–107 Since influencing develop-
ment and disease requires mitotic heritability of cel-
lular phenotypes, it is unsurprising that epigenetic
processes have come to the fore in this regard. For
over 40 years Gilbert Gottlieb has stated that with
respect to epigenetics ‘outcomes are probabilistic
rather than predetermined’.108,109 The pioneering epi-
geneticist Robin Holliday points out that it is com-
monly stated that disease is either genetic or
environmental, when in reality stochastic events are
equally important.110 He goes on to consider that epi-
genetic defects are simply bad luck.110 Over the past
decade the potential contribution of molecular epige-
netic processes to stochastic phenotypic variation has
been reiterated.97,111–118 Differences in epigenetic pro-
files between monozygotic twins119 and genetically
identical animals92,94 have been presented, that
could underlie other phenotypic differences, although
the link between epigenotype and phenotype has not
been reliably demonstrated. Mechanisms that are ulti-
mately uncovered to explain phenotypic differences
between genetically identical organisms would be
classified as epigenetic according to many of the cur-
rent definitions of epigenetics, thus there is an ele-
ment of self-fulfilling prophecy in postulating that
this will be the case. What is now required is concrete
demonstrations of epigenotype/phenotype links that

Figure 5 Variation of growth of genetically identical
marbled crayfish in an aquarium: how well would
epidemiologists be able to predict outcomes?94

Reproduced with permission from the Journal of Experimental
Biology
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could account for much of the so-called non-shared
environmental variance, and attempts to demonstrate
the causal nature of such links120 (Box 4).

Chance encounters: the advantages
of being random
If such a substantial role for chance exists in the
emergence of phenotypic (including pathological) pro-
files, why is this? One possible answer, with a long
pedigree,121–123 is that it provides for evolutionary
bet-hedging.124 Fixed phenotypes may be tuned to a
given environment, but in changing conditions a
phenotype optimized for propagation in one situation
may rapidly become suboptimal,125 a proposition sup-
ported by experimental evidence.126,127 Thus if vari-
able phenotypes are produced from the same
genotype, long-term survival of the lineage will be
improved, an evolutionary version of the proverb
‘don’t put all your eggs in one basket’.124,128 Edward
Miller suggests that large non-shared environmental

influences have emerged to provide such a range of
phenotypes, and relates this to Markowitz diversifica-
tion in financial trading, in which holding broad port-
folios of shares protects investors from the collapse of
particular sectors of the market.129 Unsurprisingly, the
extensive decades-old literature on this topic has
more recently come to focus on epigenetic pro-
cesses.111,114–116 A representative example comes
from Gunter Vogt and colleagues. Reflecting on their
demonstration of considerable phenotypic—including
epigenetic—differences between genetically identical
crayfish, they conclude that such variation may ‘act
as a general evolution factor by contributing to the
production of a broader range of phenotypes that
may occupy different micro-niches’.94 The substantial
non-shared environmental contribution to many out-
comes could, therefore, include an element—perhaps
substantial—of random phenotypic noise, consequent
on stochastic epigenetic processes. At the molecular
level, the potential existence of such processes has
been observed within twin studies, with the formal
demonstration of non-shared environmental contribu-
tions to epigenetic profiles130 and of substantial dif-
ferences in epigenetic markers between monozygotic
twins.119

Other mechanisms can also contribute to pheno-
typic diversity, including meiotic recombination and
Mendelian assortment of genetic variants acting on
highly polygenic traits, with such genetic variants
having small individual effects. Mutation will also
increase phenotypic variation. Sibling contrast ef-
fects—siblings becoming less similar than their gen-
etic and shared environmental commonalities would
suppose—could also provide for such evolutionary
bet-hedging.129 Although evidence supporting such a
process is sparse, it could lead to inflation of
non-shared environmental influences and deflation
of shared environment estimates from twin studies.

Evolutionary bet-hedging through random pheno-
typic noise can be seen as the other side of the coin
to the effects of canalization. The latter process allows
genetic variation to persist in a population without
producing phenotypic effects, until environmental
shocks produce decanalization.131 Together, these
two apparently countervailing tendencies allow for
the maintenance of genetic variation in a population,
facilitating species survival during periods of ecologic-
al change. Random phenotypic variation can protect
genotypes from elimination by selection during cycles
of environmental change. Canalization, on the other
hand, facilitates the accumulation of what has been
termed cryptic genetic variation,131 maintaining
within the population the genetic prerequisites for
variable phenotypic responses to environmental
change. As is generally the case, evolutionary expla-
nations of biological (or social) processes need to be
treated with caution.132 They are attractive proposi-
tions, however, and even when they have a long his-
tory—as with the notion that increased phenotypic

Box 4 Epigenetics: flavour of the month?

Epigenetics is an area of considerable current re-
search interest, and also of increasingly high profile
in the popular scientific literature.168 It is import-
ant to draw a distinction between mitotically stable
epigenetic changes, which will underlie both
normal development and disease within the life
of an organism, and meiotically stable epigenetic
changes, that can lead to intergenerational trans-
mission of phenotypic dispositions. The former will
almost inevitably be of importance in every aspect
of development, including the development of
disease. The latter, perhaps because of the frisson
caused by the neo-Lamarckian heresy of inherit-
ance of acquired characteristics169 has attracted
considerable attention, and indeed in discussions
of epigenetics it is this contested aspect that often
attracts most attention. With regard to being
involved in the genesis of phenotypic variation
that is not dependent on genetic variation or the
environment, intragenerational epigenetic processes
are sufficient. Aspects of both shared and non-
shared environment could, and indeed in many
cases probably do, produce long-term phenotypic
changes through the mediating role of epigenetic
changes. Epigenetic mechanisms may then
integrate the effects of the environment (both mea-
surable and unmeasurable) and purely stochastic
molecular events. In this interpretation, epigenetics
is not an alternative to other accounts of how
development occurs and disease arises, simply a
description at one particular level of inherently
multilevel processes.
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variance (perhaps epigenetic in origin) is adaptive—
can be greeted as though novel.133 Experimental stu-
dies of relevance to this hypothesis are appear-
ing126,127 that will allow future evaluation of its
importance.

A gloomy or a realistic prospect
for epidemiology and public
health?
Epidemiology and public health are population health
sciences, but concern for the fate of individuals
underlies attempts to control aggregate disease
levels. Thus Geoffrey Rose started his seminal paper,
‘Sick individuals and sick populations’134 by saying
that

In teaching epidemiology to medical students, I
have often encouraged them to consider a question
which I first heard enunciated by Roy Acheson:
‘Why did this patient get this disease at this
time?’ It is an excellent starting-point, because
students and doctors feel a natural concern for
the problems of the individual. Indeed, the central
ethos of medicine is seen as an acceptance of re-
sponsibility for sick individuals.134

Such a question reflects a long tradition in clinical
medicine of emphasizing the need to understand the
causes of specific events. In Claude Bernard’s An
Introduction to the Study of Scientific Medicine (1865) a
statistical average—such as the ratio of deaths to
recoveries after surgery—is said to mean ‘literally
nothing scientifically’, since it ‘gives us no certainty
in performing the next operation’.135,136 For each pa-
tient who died ‘the cause of death was evidently
something which was not found in the patient who
recovered; this something we must determine, and
then we can act on the phenomena or recognize
and foresee them accurately’.135 Both prediction and
understanding the causation of individual events are
promised by what Bernard referred to as ‘scientific
determinism’, the only route to useful knowledge.
He went on to dismiss ‘the law of large numbers’ as
‘never teach[ing] us anything about any particular
case’.135 Contemporary thought within many discip-
lines retains this notion. For example, a discussion of
what underlies variation within plant clones argues
against ‘positing probabilistic propensities governing
the behaviour of the plant’; anyone doing so ‘is no
biologist’ as an authentic biologist would indeed posit
‘hidden variables and seek evidence for them in more
carefully constructed experiments. To do otherwise is
to abdicate the scientist’s self-appointed tasks.’137

Public health scientists can abdicate their responsi-
bilities in this regard. For our purposes, it is immaterial
whether there is true ontological indeterminacy—that
events occur for which there is no immediate cause—

or whether there is merely epistemological indetermi-
nacy: that each and every aspect of life (from every
single one of Winnie’s coughs down to each appar-
ently stochastic subcellular molecular event) cannot
be documented and known in an epidemiological con-
text. Luckily, epidemiology is a group rather than in-
dividual level discipline,1 and it is at this level that
knowledge is sought; thus averages are what we
collect and estimate, even when using apparently
individual-level data.

At around the same time as Bernard delineated
what he considered to be the domain of scientific
medicine a very different approach was advanced
by Henry Thomas Buckle, in his ‘History of
Civilization’.138 Anticipating Durkheim, Buckle re-
flected on the predictability of suicide rates within
populations:

In a given state of society, a certain number of
persons must put an end to their own life. This
is the general law; and the special question as to
who shall commit the crime depends of course
upon special laws; which, however, in their
action, must obey the large social law to which
they are all subordinate. And the power of the
larger law is so irresistible, that neither love of
life nor the fear of another world can avail any-
thing towards even checking its operation.138

Whereas the exact motivations of the individual sui-
cide are perhaps unknowable (Figure 6), the suicide
rate of a population was a predictable phenomenon,
and differences between populations were equally
predictable. The fully probabilistic interpretation of
the law of large numbers held by Simeon-Denis
Poisson (holding that the underlying level varies,
rather than Buckle’s view that there were ordained
rates, with variation around these) accounts for why
virtually random micro-level events come together
to provide simple, understandable and statistically
tractable higher-order regularities.139,140 Happily for
epidemiologists, it is precisely these regularities that
we deal with.

Returning to Winnie (Figure 7), as she is part of the
tail of a population distribution the existence of some-
one like her is inevitable. The problem is, of course,
that it is not possible to know in advance who will be
Winnie and who will be dead from smoking-related
disease before their time. Most cases of lung cancer
are attributable to smoking, but many smokers do not
develop lung cancer. Thus, in the Whitehall Study of
male civil servants in London cigarette smoking ac-
counts for <10% of the variance (estimated as the
pseudo-R2)141 in lung cancer mortality.102 At the
population level, however, smoking accounts for vir-
tually all of the variance—over 90% with respect to
lung cancer mortality over time in the USA,142 and
virtually all of the differences in rates between areas
in Pennsylvania.143 It is in relation to this large

EPIDEMIOLOGY, EPIGENETICS AND THE ‘GLOOMY PROSPECT’ 549

David Colquhoun
Highlight

David Colquhoun
Highlight

David Colquhoun
Highlight



contribution of smoking to the population burden of
lung cancer that <10% of variance accounted for by
cigarette smoking among individuals observed in pro-
spective epidemiological studies, and the 12% shared
environmental variance reported in Table 1, should be
considered. The shared environmental component will
in part reflect shared environmental differences in
cigarette smoking initiation.144 The non-shared
environmental component (62% of the variance in
Table 1) will include the non-shared environmental
influence on initiation, amount and persistence of
smoking.144 However, as discussed earlier, stable
aspects of the non-shared environment—which smok-
ing would tend to be—are generally small contribu-
tors to the total non-shared environmental effect,
and thus much of this will also reflect the substantial
contribution of the kinds of chance events—from the
sub-cellular to the biographical—discussed above.
Richard Doll, reflecting on the 50th anniversary of
the publication of his classic paper with Peter
Armitage on the multi-stage theory of carcinogen-
esis145 considered that

‘whether an exposed subject does or does not
develop a cancer is largely a matter of luck; bad
luck if the several necessary changes all occur in
the same stem cell when there are several thou-
sand such cells at risk, good luck if they don’t.
Personally I find that makes good sense, but
many people apparently do not’.146

In epidemiological studies, exposures and outcomes
are assessed at a group level, even when we are ap-
parently analysing individual-level data. In the
Whitehall and other prospective studies, we estimate
the relative risks as 10 or more for smoking and lung

cancer risk,147 but these relative risks relate to groups
of smokers compared with groups of non-smokers.
Epidemiological inference is to the group, not to the
individual.

These reflections will be unexceptional to epidemi-
ologists, as they merely illustrate a key point made by
Geoffrey Rose in his contributions to the theoretical
basis of population health148,149—that the determin-
ants of the incidence rate experienced by a population
may explain little of the variation in risk between
individuals within the population. Accounting for
incidence differs from understanding particular inci-
dents. Consider obesity in this regard;150 its preva-
lence has increased dramatically over the past few
decades, yet estimates of the shared environmental
contributions to obesity are small. Clearly germline
genetic variation in the population has not changed
dramatically to produce this increase in obesity.
However, as Table 3 demonstrates, the prevalence of
obesity has increased in both genders, all ages, all
ethnic and socio-economic groups, and in both smo-
kers and non-smokers.151 The most likely reason for
this is that there has been an across the board shift
in the ratio of energy intake to energy expenditure.
Study designs utilized to estimate heritability cannot
pick this up—twins, for example, are perfectly
matched by birth cohort.150 Thus, although energy
balance may underlie the burden of obesity in a popu-
lation—and behind this, the social organization of
food production, distribution and promotion, together
with policies influencing transportation, urban plan-
ning and leisure opportunities—the determinants of
who, against this background, is obese within a popu-
lation could be largely dependent on a combination of
genetic factors and chance. The basic principle—that
different factors may underlie variation within a

Figure 6 Sylvia Plath and Ted Hughes. In his poem about Plath’s suicide, ‘Last letter’ Hughes wrote ‘what happened that
night . . . is as unknown as if it never happened. What accumulation of your whole life, like effort unconscious, like birth
pushing through the membrane of each slow second into the next, happened only as if it could not happen’207
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population and variations over time or between popu-
lations—can be found in the writings of such dispar-
ate figures as R.A. Fisher,152 Sewall Wright153,154 and
Richard Lewontin,155 although with greatly varying
emphasis. Epidemiologists and other population
health scientists have drawn out the implications of
this well-established and non-controversial insight in
ways that link it with classical epidemiological rea-
soning (Box 5).156–158

Rose illustrated this point with the thought experi-
ment of a population in which all the individuals
smoke 20 cigarettes a day, in which ‘clinical, case–
control and cohort studies alike would lead us to

conclude that lung cancer was a genetic disease;
and in one sense that would be true, since if everyone
is exposed to the necessary agent, then the distribu-
tion of cases is wholly determined by individual sus-
ceptibility’.134 I would contend that the role of chance
events, in addition to genetic variation, in influencing
who would develop lung cancer in this setting should
be added here.

We can now reflect again on Table 1, where it is
suggested that the components of variance for lung
cancer are 26% heritable, 12% shared environment
and 62% non-shared environment. These figures are
entirely compatible with smoking being far and away

Figure 7 Winnie: the tail of a distribution or a ‘black swan’?
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the preeminent tangible environmental cause of
lung cancer, and responsible for the incidence rate
of lung cancer in any population. The heritability of
lung cancer will in part reflect the heritability of
smoking behaviours.144 Indeed, the first molecular
genetic variation identified in hypothesis-free
genome wide association studies of lung cancer was
in a gene related to nicotine reception and smoking
behaviour.159–161 This association of a genetic variant
linked to a modifiable exposure (in this case cigarette
smoking) with lung cancer constitutes evidence
within the Mendelian randomization framework162

that cigarette smoking causes lung cancer. We clearly
do not require such confirmation in this case.
However if the link between smoking and lung
cancer had not already been established identi-
fication of such germline genetic influences would
have pointed epidemiologists in the right direction.
Interaction between genetic variation and the
non-shared environment—in this case the non-
shared aspect of smoking behaviour—is classified

within the genetic variance in quantitative genetic
models.56 Such interactions may not be insubstantial
and could be informative with respect to the casual
nature of environmental factors.167 The link between
smoking-associated genetic variation and lung cancer
illustrates the potential of hypothesis-free identifica-
tion of causal relationships within observational
data.163 Importantly, a genetic variant that itself ac-
counts for a very limited proportion of the heritability
of lung cancer—which in turn is a modest proportion
of the overall variance in lung cancer risk—can pro-
vide robust causal evidence about a modifiable risk
factor that the large majority of lung cancer cases
can be attributed to. Indeed, such genetic variants
can provide randomized evidence in situations
where randomized controlled trials may not be
possible.

As might be expected, there is a more substantial
shared environmental contribution to initiation of cig-
arette smoking—generally occurring in adolescence,
when siblings are residing in a common home—
than to smoking persistence (which can stretch into
much later adulthood) and amount.144 The modest
shared component of variance in lung cancer risk
indexed in Table 1 will relate, in part at least, to an
exposure that accounts for most of the burden of lung
cancer in a population. The very substantial
non-shared environmental component will contain
some non-shared contribution to smoking behaviour
(such as peer group influences), together with
random events occurring within, or to, particular in-
dividuals. From an epidemiological or public health
perspective the relatively small shared environmental
and individual molecular genetic contributions to
lung cancer risk can be very informative about what
underlies the vast majority of all of the disease in a
population. The large non-shared environmental com-
ponent, on the other hand, is much less informative
in this regard.

These considerations also address the apparent
paradox, mentioned above, regarding the use of sib-
ling controls in epidemiological studies. The relative-
ly small shared environmental effects can generate
associations through residual confounding that are
of the order of magnitude of many epidemiological
associations, although in terms of variance explained
for the outcome the effects are small. This is be-
cause such shared environmental factors can be
strongly related to the exposure under consideration.
In the example discussed previously of maternal
smoking during pregnancy, this could be very
strongly related to family-level socio-economic cir-
cumstances and parental education. Confounding
by parental genetic factors may also occur, and
this could generate or contribute to the observed
associations. Confounding by these family—level
socio-economic or genetic factors will be taken into
account in a between—siblings analysis. When the
substantial non-shared environmental influences are

Table 3 Changes in obesity prevalence in adults by char-
acteristics (per 100) US adults, by various characteristics151

Characteristic 1991 1998 Difference
Increase

(%)

Sex

Men 11.7 17.7 6.0 51.5

Women 12.2 18.1 5.9 47.4

Age, years

18–29 7.1 12.1 5.0 69.9

30–39 11.3 16.9 5.6 49.5

40–49 15.8 21.2 5.4 34.3

50–59 16.1 23.8 7.7 47.9

60–69 14.7 21.3 6.6 44.9

570 11.4 14.6 3.2 28.6

Race

White 11.3 16.6 5.3 47.3

Black 19.3 26.9 7.6 39.2

Hispanic 11.6 20.8 9.2 80.0

Other 7.3 11.9 4.6 62.0

Education levels

Less than high
school

16.5 24.1 7.6 46.0

High school 13.3 19.4 6.1 46.1

Some college 10.6 17.8 7.2 67.5

College and further 8.0 13.1 5.0 62.9

Smoking status

Never 12.0 17.9 5.9 48.5

Ex-smoker 14.0 20.9 6.9 49.4

Current 9.9 14.8 4.9 50.3
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Box 5 Variance and cause: different disciplinary perspectives

‘It is desirable that . . . loose phrases about the ‘percentage of causation,’ which obscure the essential distinction between the
individual and the population, should be carefully avoided’ RA Fisher, Transactions of the Royal Society of Edinburgh,
1918.152

The relationship between explanation of variance within a population and identification of the causes of
events or outcomes has a fraught and contested history.58,187 The furore over ‘The Bell Curve’,188 a polemical
work on apparent population-level differences in abilities, is one high-profile example. This controversy
exists despite some of the basic propositions being accepted by most commentators. Even Francis
Galton—the sometime bogeyman of the eugenics movement—wrote ‘Nature prevails enormously over nur-
ture when the differences of nature do not exceed what is commonly to be found among persons of the
same rank of society and in the same country’.189 In other words, the contribution of genetic inheritance to
differences within a population is large when there is limited environmental variation between people within
a particular context. If the context were broadened, the contribution of such environmental factors would be
greater. Heritability is not a fixed characteristic, nor does high heritability within a particular situation
indicate that environmental change cannot lead to dramatic modification of outcomes. Height—the topic
of much of Galton’s own work—is both highly heritable and highly malleable, as changes over time in
height make clear.190 Wilhelm Johannsen, the coiner of the term ‘gene’ recognized that in a genetically
highly homogeneous group ‘hereditary may be vanishingly small within the pure line’,191 and that in this
situation ‘all the variations are consequently purely somatic and therefore non-heritable’.191 Conversely, in a
highly standardized environment, the contribution of genetic factors will be increased. It is traditional in
epidemiological and related fields to hark back to such trusted thought experiments as how phenylketonuria
(PKU) would be expressed against the background of different levels of phenylalanine intake within popu-
lations, to demonstrate that the same outcome can be 100% heritable and 100% environmental in different
contexts.5,192–197 The point is well made that the presence of a clear genetic predisposition does not mean
that environmental change cannot have major effects on disease risk. Perhaps reflecting the contested nature
of this area, however, public health academics are sometimes asymmetrical in their reasoning, and after
having presented the clear example of PKU they then claim that secular trends and migrant studies—with
their unambiguous demonstrations of environmental influences on disease—provide arguments against
strong genetic predisposition to common disease.5 This is equivalent to saying that the clear demonstration
that genetic lesions underlie PKU in permissive environments argues against any major environmental
contribution to PKU.

A second popular thought experiment relates to the possession of two eyes or two legs. The reason
humans are almost always born with two of each is genetically determined. However, within a population
the trait would not be highly heritable—and certainly not 100% heritable—with loss of a leg or eye generally
reflecting accidental events. The distinction between explaining individual trajectories (genes are responsible
for the development of two eyes and two legs) and variation in a population is clear, and reflects the
distinction between ‘who?’ (why does one person have a disorder or problem rather than another?) and
‘how many’ (what proportion of the population are affected?) questions.198 A distinction between historical
origins of explanations of variance in populations (with R.A. Fisher as the exemplar) and of development
(with Lancelot Hogben as the advocate) has been highlighted by James Tabery.199,200 This distinction has
sometimes been misunderstood, however, as indicating that claims for the ontological status of particular
gene by environment interactions should not be judged within the usual framework of scientific scrutiny:
consistency of effects and replication. Thus, celebrated apparent gene by environment interactions (with no
main genetic effects), such as that between the serotonin transporter gene (5-HTTLPR) and stressful life
events in relation to the risk of depression,201 which essentially fail such tests202,203 are said to be being
misjudged by the application of statistical evaluation, and should instead be considered as part of the
phenomenology of the biology of development.204 Rather than this being the case it may be that inappro-
priate initial claims are made regarding the existence of group-level processes (an exposure meaningfully
categorizable at the population level interacting with a single genetic variant with no appreciable main effect
on the outcome) followed by an unwillingness to allow such claims to be evaluated within the framework
appropriate for group-level effects. Instead, we may imagine that there are a myriad of almost unimaginable
higher order interactions—combinations of unique environments interacting with combinations of genetic
variants, which themselves show epistasis—with only a single individual who bears these exposure com-
binations. Although these may (and in my view almost certainly do) have important influences on individ-
ual trajectories, we do not have (and will never have) the tools to identify them. This should not surprise us
given the difficulty in disciplining variation during the laboratory study of such processes in highly con-
trolled mouse experiments, for example.205
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largely due to chance events they will be unrelated
to exposures under investigation, and will not lead
to systematic confounding. Thus despite the often
large apparent effects of the non-shared environ-
ment, such contributions will generally not be a
source of systematic confounding in epidemiological
studies.

Lay and professional
epidemiology: catching up with
common sense?
In the first sustained presentation on the importance
of the non-shared environment,22 Rowe and Plomin
noted that after the birth of a second child parents are

often struck by how different their two children are,
despite upbringing being in common. In relation to
health, non-professional understanding of causes of
disease regularly identify the role of chance (or
fate)164 and heritable factors165 as being of consider-
able importance. Indeed I have to confess that when I
was involved in a cross-disciplinary project exploring
the construction of models of disease causation held
by the general public—which we referred to as ‘lay
epidemiology’2—I was disappointed that, for the
public at large, there appeared to be a concentration
on such apparently individual factors as inheritance
and fate, rather than my preferred model of the
socio-political determinants of health.166 The cognitive
mapping of the lay epidemiology of disease is predi-
cated on observing individual cases among relatives,
friends, acquaintances and public figures, and as such

This paper has focused on the role of ‘the gloomy prospect’ within epidemiology and public health, but
similar considerations apply within many other disciplines and discourses. Within sociology, for example,
the perhaps under-appreciated role of chance has been emphasised,206 illustrated with entertaining examples
from the sporting world. A striking example of what is known as Stein’s paradox in statistics is that within-
season prediction of the end of season batting averages for particular baseball players is generally better if
strongly weighted towards the average of all players at that stage in the season.207 The best guess at what
will happen to an individual can often be made by largely discounting individual characteristics. The popular
recognition of the importance of chance in people’s lives164 can also influence response to cultural artefacts.
Thus in films, novels or plays explanation of events is often near-deterministic, which in certain circum-
stances appears satisfying. Consider Alfred Hitchcock’s film Marnie. The behaviour of the eponymous
character—fear of thunderstorms, the colour red and men, together with her thieving and frigidity—is all
explained at the end of the film by a particular event occurring when Marnie was six. She discovered her
prostitute mother with a client during a thunderstorm and ended up killing him (in a cinematic shock of
bright red blood) with a poker. Everything seamlessly rolled on from this event. In crime stories this is often
what the reader wants. As Stephen Kern entertainingly demonstrates208 the range of causal models in such
narratives has a similar range to epidemiology—from the long-arm of early life (or prenatal) events through
to primarily psychological and social causation. Outside of murder novels, however, the factitious nature of
such explanations can be entirely unsatisfactory. The apparent reality of the well-told narrative appears
unreal precisely because everything is tied up and explained—a notion that has resonance with David
Shield’s literary manifesto Reality Hunger.209 To take one example, the clunking plots of the novels of Ian
McEwan—Saturday for example—revolve around such faux ‘explanations’. The work of McEwan—and simi-
lar purveyors of book club fare, such as Jonathan Franzen—appear, paradoxically, much less true than such
novels as Laurence Sterne’s Tristram Shandy, Macado de Assis’ Epitaph of a Small Winner, Blaise Cendrars’
Moravagine or Alasdair Gray’s Lanark, which are apparently not seeking such realism. In these works expla-
nations, when offered, become things to be explained, and the often random nature of the world as codified
in people’s experience is respected.

Poor individual prediction does not just apply to human lives. Each earthquake surprises us, although we
know very well in which parts of the world they are likely to occur. The science of earthquake prediction is
certainly one that has had to embrace the gloomy prospect.210 Historical occurrences are of an essentially
individual nature, with both chance and potentially understandable causes playing a role.211 Attempting
a confident causal narrative in the absence of group level data from multiple but equivalent events
is analogous to providing a complete description of why Winnie didn’t develop smoking related disease
whilst another particular individual did. Evolution is another one-off, in which much appears random and
even detecting correlations between major environmental change and the speed of evolutionary change has
proved difficult.212 Of course if we could run historical or evolutionary processes repeatedly, there would
have been different trajectories and outcomes on each occasion. Some regularities would also appear analo-
gous to the group-level differences in disease incidence rates seen in relation to group-level exposure
differences. Chance (at one level) and near necessity (at another) may be the only certainty in attempting
to understand epidemiological—and many other—processes.
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Box 6 Personalized medicine and individualized health promotion: category errors?

Personalized medicine has been promoted as a way of improving therapeutic effectiveness, by targeting
treatments to the characteristics of individual patients. The figure215 presents trajectories of severity of
depression over time for 20 participants with the same initial diagnosis treated with the same anti-depres-
sant in one arm of a randomized controlled trial, GENDEP,216 the aim of which was described at its
inception as being to revolutionize the treatment of depression . . . [and] . . . to make it easier for doctors to
decide which antidepressant will be most likely to work for a given depressed person.217 The trajectories in
the figure have been used to illustrate the potential to identify gene by environment interactions, or phe-
notypic sub-groups that would respond differentially to particular treatments.215 The lines of evidence that
have been reviewed in this paper suggest that this may be an over-ambitious aim, with the trajectories
reflecting ontologically or epistemologically stochastic events rather than epidemiologically tractable ones.
Indeed, in the event the GENDEP study failed to identify any robust genetic influences on treatment
response, or sub-categorizations of depression that reliably predicted outcome.218,219

Now let us consider the most celebrated cases of supposedly personalized medicine. These include the
identification of genetic variants related to adverse responses to the drugs abacavir, the statins and fluclox-
acillin,8,220,221 genetic variants related to the appropriate dose of drugs such as warfarin and clopidogrel,8 or
the identification of sub-groups of patients with leukaemia or breast cancer who respond to particular
treatments.8 These findings do not in reality relate to individual patients; rather the data have been pro-
duced with respect to (and can only be appropriately applied to) particular groups of patients. Consider
statin myopathy, a condition that occurred in around 1% of participants in the SEARCH randomized con-
trolled trial.221 A common variant in the gene SLCO1B1 was strongly associated with risk (odds ratio for
myopathy 4.5 in heterozygotes and 16.9 in risk allele homozygotes). However over a quarter of the popula-
tion are carriers of the risk variant, and any treatment implications apply to the large groups defined by such
carriage. In the case of the use of imatinib in leukaemia the personalization of treatment relates to identi-
fication of the sub-group of leukaemias that fall into the chronic myelogenous leukemia category. Similarly
trastuzumab (Herceptin) is appropriate treatment for the quarter to a third of breast cancer patients whose
tumours express the growth factor receptor HER2. In all these cases treatments are not personalized; rather
they are stratified—hence the adoption of the term stratified medicine rather than personalized medicine
by many authorities.

In the case of prevention rather than therapeutics an analogous situation is encountered. With respect to
coronary heart disease (CHD), for example, individually targeted health promotion aimed at risk factor
management (such as smoking cessation) has had very disappointing results.222 Conversely, population-
level data demonstrate substantial and rapid reductions in smoking levels and CHD rates over time.223

Population aggregate data present a very different picture regarding the preventability of CHD than data
on individuals suggests. Epidemiological reasoning would have led us to anticipate that group-level processes
require group-level analysis and group-level solutions. As with therapeutics, stratified rather than persona-
lized approaches are what is required.
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the essential unpredictability of these events fully
supports the popular analysis. At a group level,
the underlying social causes of IHD could be social
and political structure, sequentially mediated through
free trade in toxic microenvironments, in health-
related behaviours, and in elevated body mass
index, blood pressure, serum cholesterol, glucose
and insulin. At an individual level, it is mostly
genes and chance.

Learning to live with
randomness: reaffirming the role
of epidemiology in the decade
of the epigenome
Epidemiologists have survived the decade of the
genome relatively unscathed, content to be pheno-
typers for their genetic colleagues, and accept the
redefinition of authorship on4100 ‘author’ papers re-
porting tiny relative risks associated with common
genetic variants. As we enter the next decade—clearly
with the epigenome to the fore—how should we
understand our role? One perhaps counter-intuitive
way is to embrace the findings of quantitative genet-
ics and realize they actually enhance the importance
of the insights that epidemiology brings. First, most
traits have a non-trivial genetic component. This is
good news: it means that genetic variants can be uti-
lized as instrumental variables for the near-alchemic
act of turning observational into experimental data,
and allow the strengthening of causal inference with
respect to environmentally modifiable exposures, in
the absence of randomized trials.162,167 Indeed, we
might even enter the age of hypothesis-free causal-
ity.163 Second, exposures that affect disease risk at a
group level may have small effects in quantitative
genetics terms (‘variance explained’), but they are
both something that public health policy can do
something about and they can account for the large
majority of the cases of disease in a population. Third,
unstable aspects of the non-shared environment in
childhood and adulthood probably largely consist of
chance events, about which we can do nothing. We
should be happy that their random nature means they
are not systematically related to the things we are
interested in—and are therefore not confounders.
Stable aspects of the non-shared environment,
whilst in terms of ‘variance explained’ appearing
small, are more promising as indicators of potential
levers for health improvement. Finally, in terms of
public health policy, we should target the modifiable
causes of disease that heritability and shared environ-
ment tell us about. This must be at a group level,
however, and we should do so without pretending
to understand individual-level risk (Box 6), or misrep-
resent population level data (smokers die earlier on
average) as individual level events (each smoker
shortens her or his life). If we pretend the latter

then every Winnie (Figure 7) is a ‘black swan’, the
existence of whom proves that not all swans are
white. Health promotion approaches that have less
coherent views on disease causation than those popu-
larly held are bound to be unsuccessful.2 Chance leads
to averages being the only tractable variables in many
situations, and this is why epidemiology makes sense
as a science. We should embrace the effects of chance,
rather than pretend to be able to discipline them.
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202 Munafö MR, Durrant C, Lewis G, Flint J. Gene X envir-
onment interactions at the serotonin transporter locus.
Biol Psychiatry 2009;65:211–19.

203 Risch N, Herrell R, Lehner T et al. Interaction between
the serotonin transporter gene (5-HTTLPR), stressful life
events, and risk of depression. JAMA 2009;301:2462–71.

204 Rutter M. Gene—Environment Interplay. Depression and
Anxiety 2010;27:1–4.

205 Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse
behavior: interactions with laboratory environment.
Science 1999;284:1670–2.

206 Lieberson S. Modelling social processes: some lessons
from sports. Sociological Forum 1997;12:11–35.

207 Efron B, Morris C. Stein’s paradox in statistics. Scientific
American 1977;236:119–27.

208 Kern S. A cultural history of causality. Science, Murder Novels,
and Systems of Thought. Princeton: Princeton University
Press, 2004.

209 Shields D. Reality Hunger. London: Penguin Books, 2010.
210 Hough S. Predicting the unpredictable. Princeton: Princeton

University Press, 2010.
211 Evans RJ. In defence of history. New York: W. W. Norton &

Co., 1999.
212 Bennett K. The chaos theory of evolution. The New

Scientist 2010;2782:28–31.
213 Davey Smith G, Egger M. Incommunicable knowledge?

Interpreting and applying the results of clinical trials and
meta-analyses. J Clin Epidemiol 1998;51:289–295.

214 Ted Hughes’s poem on the night Sylvia Plath died. New
Statesman, 6th October 2010.

215 Uher R. Genes, environment, and individual differences
in responding to treatment for depression. Harv Rev
Psychiatry 2011;19:109–24.

216 Uher R, Maier W, Hauser J et al. Differential efficacy of
escitalopram and nortriptyline on dimensional measures
of depression. Br J Psychiatry 2009;194:252–9.

217 http://gendep.iop.kcl.ac.uk/background.php.
218 Uher R, Perroud N, Ng MY et al. Genome-wide pharmo-

cogenetics of antidepressant response in the GENDEP
project. Am J Psychiatry 2010;167:555–64.

219 Uher R, Dernovsek MZ, Mors O et al. Melancholic, aty-
pical and anxious depression subtypes and outcome of
treatment with escitalopram and nortriptyline. J Affect
Disord 2011;132:112–20.

220 Daly AK, Donaldson PT, Bhatnaga P et al. HLA-B*5701
genotype is a major determinant of drug-induced liver
injury due to flucloxacillin. Nat Genet 2009;41:816–19.

221 The SEARCH Collaborative Group. SLCO1B1 variants
and statin-induced myopathy. N Eng J Med 2009;359:
789–99.

222 Ebrahim S, Davey Smith G. Systematic review of rando-
mised controlled trials of multiple risk factor interven-
tions for preventing coronary heart disease. BMJ 1997;
314:1666–74.

223 Hardoon SL, Whincup PH, Lennon LT,
Wannamethee SG, Capewell S, Morris RW. How much
of the recent decline in the incidence of myocardial
infarction in British men can be explained by changes
in cardiovascular risk factors? Evidence from a prospec-
tive population-based study. Circulation 2008;117:
598–604.

562 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY




