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Interpreting observational studies: why
empirical calibration is needed to
correct p-values
Martijn J. Schuemie,a,b*† Patrick B. Ryan,b,c

William DuMouchel,b,d Marc A. Suchardb,e and David Madiganb,f

Often the literature makes assertions of medical product effects on the basis of ‘p < 0:05’. The underlying
premise is that at this threshold, there is only a 5% probability that the observed effect would be seen by chance
when in reality there is no effect. In observational studies, much more than in randomized trials, bias and con-
founding may undermine this premise. To test this premise, we selected three exemplar drug safety studies from
literature, representing a case–control, a cohort, and a self-controlled case series design. We attempted to repli-
cate these studies as best we could for the drugs studied in the original articles. Next, we applied the same three
designs to sets of negative controls: drugs that are not believed to cause the outcome of interest. We observed how
often p < 0:05 when the null hypothesis is true, and we fitted distributions to the effect estimates. Using these
distributions, we compute calibrated p-values that reflect the probability of observing the effect estimate under
the null hypothesis, taking both random and systematic error into account. An automated analysis of scientific
literature was performed to evaluate the potential impact of such a calibration. Our experiment provides evi-
dence that the majority of observational studies would declare statistical significance when no effect is present.
Empirical calibration was found to reduce spurious results to the desired 5% level. Applying these adjustments
to literature suggests that at least 54% of findings with p < 0:05 are not actually statistically significant and
should be reevaluated. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.
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1. Introduction

Observational studies deliver an increasingly important component of the evidence base concerning the
effects of medical products. Payers, regulators, providers, and patients actively employ observational
studies in therapeutic decision making. While randomized controlled trials (RCTs) are regarded as the
gold standard of evidence when measuring treatment effects, conducting these experiments remains
resource intensive, time consuming, can suffer from limitations in sample size and generalizability, and
often may be infeasible or unethical to implement. In contrast, the non-interventional secondary use of
observational data collected within the healthcare system for purposes such as reimbursement or for clin-
ical care can yield timely and cost-efficient insights about real-world populations and current treatment
behaviors at a small fraction of the cost and in days instead of years. With these potential advantages
comes the recognition that observational studies can suffer from various biases and that results might not
always be reliable. Results from observational studies often cannot be replicated [1,2]. For example, two

aDepartment of Medical Informatics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
bObservational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD, U.S.A.
cJanssen Research and Development LLC, Titusville, NJ, U.S.A.
dOracle Health Sciences, Burlington, MA, U.S.A.
eDepartment of Biostatistics, UCLA School of Public Health, University of California, Los Angeles, CA, U.S.A.
fDepartment of Statistics, Columbia University, New York, NY, U.S.A.
*Correspondence to: Martijn J. Schuemie, Department of Medical Informatics, Erasmus University Medical Center
Rotterdam, Rotterdam, The Netherlands.

†E-mail: m.schuemie@erasmusmc.nl
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which per-
mits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for
commercial purposes.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2013



M. J. SCHUEMIE ET AL.

recent independent observational studies investigating oral bisphosphonates and the risk of esophageal
cancer produced results leading to conflicting conclusions [3,4], despite the fact that the two studies ana-
lyzed the same database over approximately the same period. A systematic analysis has suggested that
the majority of observational studies return erroneous results [5]. The main source of these problems is
that observational studies are more vulnerable than RCTs to systematic error such as bias and confound-
ing. In RCTs, randomization of the exposure helps to ensure that exposed and unexposed populations
are comparable. Observational studies, by definition, merely observe clinical practice, and exposure is
no longer the only potential explanation for observed differences in outcomes. Many statistical methods
exist that aim to reduce this systematic error, including self-controlled designs [6] and propensity score
adjustment [7], but it is unclear to what extent these solve the problem.

Despite the fact that the problem of residual systematic error is widely acknowledged (often in the
discussion section of articles), the results are sometimes misinterpreted as if this error did not exist.
Most important, statistical significance testing, which only accounts for random error, is widely used in
observational studies. Significance tests compute the probability that a study finding at least as extreme
as the one reported could have arisen under the null hypothesis (usually the hypothesis of no effect).
This probability, called the p-value, is compared against a predefined threshold ˛ (usually 0.05), and if
p < ˛, the finding is deemed to be ‘statistically significant’.

Although we believe that most researchers are aware of the fact that traditional p-value calculations
do not adequately take systematic error into account, likely because of a lack of a better alternative, the
notion of statistical significance based on the traditional p-value is widespread in the medical literature.
Using PubMed, we conducted a systematic review of this literature in the last 10 years and identified
4970 observational studies exploring medical treatment with effect estimates in their abstracts. Of these,
1362 provided p-values in the abstract, and 83% of these p-values indicated statistical significance. The
remaining 3608 articles provided 95% confidence intervals instead. Of these confidence intervals, 82%
excluded 1 and therefore also indicated statistical significance. The details of this analysis are provided
in the Supporting information, Appendix F‡.

In this research, we focus on the fundamental notion of statistical significance in observational studies,
testing the degree to which observational analyses generate significant findings in situations where no
association exists. To accomplish this, we selected two publications: one investigating the relationship
between isoniazid and acute liver injury [8] and one investigating sertraline and upper gastrointesti-
nal (GI) bleeding [9]. These two publications represent three popular study designs in observational
research: the first publication used a cohort design, and the second paper used both a case–control design
and a self-controlled case series (SCCS). We replicated these studies as best we could, closely following
the specific design choices. However, because we did not have access to the same data, we used suit-
able substitute databases. For each study, we identified a set of negative controls (drug–outcome pairs
for which we have confidence that there is no causal relationship) and explored the performance of the
study designs. We show that the designs frequently yield biased estimates, misrepresent the p-value, and
lead to incorrect inferences about rejecting the null hypothesis. We introduce a new empirical frame-
work, based on modeling the observed null distribution for the negative controls that yields properly
calibrated p-values for observational studies. Using this approach, we observe that about 5% of drug–
outcome negative controls have p < 0:05, as is expected and desired. By applying this framework to a
large set of historical effect estimates under various assumptions of bias, we show that for the majority of
estimates currently considered statistically significant, we would not be able to reject the null hypothesis
after calibration. Our framework provides an explicit formula for estimating the calibrated p-value using
the traditionally estimated relative risk and standard error. As such, all stakeholders can easily employ
this decision tool as an aid for minimizing the potential effects of bias when interpreting observational
study results.

2. Methods

2.1. Example study 1: Isoniazid and acute liver injury using a cohort design

Smith et al. [8] used administrative health data from the province of Quebec to investigate the relation-
ship (odds ratio) between tuberculosis treatment (mostly isoniazid) and hepatic events in a cohort design

‡Supporting information may be found in the online version of this article.
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study. We conducted a similar study in the Thomson MarketScan Medicare Supplemental Beneficiaries
database, which contains data on 4.6 million subjects. We selected two groups (cohorts): (1) all subjects
exposed to isoniazid and (2) all subjects having the ailment for which isoniazid is indicated, in this case
tuberculosis, and having received at least one drug that is not known to cause acute liver injury. We
removed all subjects who belonged to both groups and subjects for which less than 180 days of obser-
vation time was available prior to their first exposure to the drug in question. Acute liver injury was
identified on the basis of the occurrence of ICD-9-based diagnosis codes from inpatient and outpatient
medical claims and was defined broadly on the basis of codes associated with hepatic dysfunction, as
have been used in prior observational database studies [10–13] The full list of codes is provided in the
Supporting information, Appendix A. The time at risk was defined as the length of exposureC 30 days,
and we determined whether subjects experienced an acute liver injury during their time at risk. Using
propensity score stratification, the cohorts were divided over 20 strata, and an odds ratio over all strata
was computed using a Mantel–Haenszel test. The propensity score was estimated using Bayesian logis-
tic regression using all available drug, condition, and procedure covariates occurring in the 180 days
prior to first exposure, in addition to age, sex, calendar year of first exposure, Charlson index, number of
drugs, number of visit days, and number of procedures.

2.2. Example study 2: SSRIs and upper GI bleeding using a case–control design

Tata et al. [9] conducted a case–control analysis using a database of computerized medical records
from general practices across England and Wales to study the relationship (odds ratio) between selective
serotonin reuptake inhibitors (SSRIs) and upper GI bleeding. We used a comparable database of medical
records from general practices in the USA, the General Electric (GE) Centricity database, which con-
tains data on 11.2 million subjects. We used similar restrictions on study period (start of 1990 through
November 2003), age requirements (18 years or older), available time prior to event (180 days), num-
ber of controls per case (6), and risk definition window (30 days following the prescription). Controls
were matched on age and sex but not on postal code because these data were not readily available in
our database. Instead of considering several SSRIs, we selected a single drug: sertraline. Cases of upper
GI bleeding were identified on the basis of the occurrence of ICD-9 diagnosis codes in the problem
list. These codes pertain to esophageal, gastric, duodenal, peptic, and gastrojejunal ulceration, per-
foration, and hemorrhage, as well as gastritis and non-specific gastrointestinal hemorrhage, and have
previously been evaluated through source record verification [14–16]. The full list of codes is provided
in the Supporting information, Appendix A.

2.3. Example study 3: SSRIs and upper GI bleeding using an SCCS design

To check the robustness of their findings, Tata et al. [9] also conducted an SCCS to estimate the inci-
dence rate ratio using the same data. Again, we used the GE Centricity database and duplicated the study
design choices, including the removal of the 30 days prior to the first prescription as introduced by the
authors to account for possible contraindications.

2.4. Selection of negative controls

For our negative controls, we could either pick different drugs that are known not to cause the outcome
of interest or pick outcomes that are known not to be caused by our drug of interest [17]. Picking dif-
ferent outcomes would be more difficult in observational studies because some study designs such as
case–control are focused on outcomes and would require resampling of subjects and because outcomes
are often more difficult to extract from observational data, requiring complex algorithms that need to be
validated. On the other hand, different drug exposures are usually easily and fairly accurately identified
in prescription tables, and we therefore have opted for using negative control drugs.

We focus our analysis on the two outcomes in our example studies: acute liver injury and upper GI
bleeding. Both outcomes arise frequently in drug safety studies. We attempted to perform an exhaus-
tive search to define exposure controls for these two outcomes by starting with all drugs with an active
structured product label. Subsequently, we selected only those drugs meeting the following criteria:

(1) The outcome of interest could not be listed in any section of the Food and Drug Administration
structured product label, nor could any related outcome be listed.

(2) The drug could not be listed as a ‘causative agent’ for the outcome in the book Drug-Induced
Diseases: Prevention, Detection and Management [18].

(3) A manual review of the literature found no studies showing the drug caused the outcome.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2013
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For acute liver injury, we found 37 negative controls, while for upper GI bleeding, 67 drugs met these
criteria. Appendix B (Supporting information) provides the full list.

2.5. Effect of confounding by indication

Arguably, when certain types of bias are expected to be present when designing a study, one might reject
certain design choices for that reason. For example, a case–control design is deemed by some to be less
appropriate when confounding by indication is considered likely because of limited options to adjust
for this type of confounding. Instead, one would perhaps opt for a cohort design and restrict the com-
parator population to those also having the ailment for which the drug of interest is indicated and use
propensity score adjustment, or choose a self-controlled design such as the SCCS. To estimate whether
this ‘informed design’ would change the observed distribution, we refitted the distribution for the case–
control design while eliminating control drugs with obvious potential for confounding by indication:
amylases, endopeptidases, hyoscyamine, and sucralfate are all drugs for the treatment of peptic ulcers
and are therefore more likely to be observed when studying upper GI bleeds, while epoetin alfa and
ferrous gluconate are two drugs that are used to combat anemia, one of the possible consequences of
upper GI bleeding.

2.6. Calibrating p-values

Traditional significance testing utilizes a theoretical null distribution that requires a number of assump-
tions to ensure its validity. Our proposed approach instead derives an empirical null distribution from the
actual effect estimates for the negative controls. These negative control estimates give us an indication
of what can be expected when the null hypothesis is true, and we use them to estimate an empirical null
distribution. We fitted a Gaussian probability distribution to the estimates, taking into account the sam-
pling error of each estimate. We have found that a Gaussian distribution provides a good approximation,
and more complex models, such as mixtures of Gaussians and non-parametric density estimation, did
not improve results. Let yi denote the estimated log effect estimate (relative risk, odds or incidence rate
ratio) from the i th negative control drug–outcome pair, and let �i denote the corresponding estimated
standard error, i D 1,. . . ,n. Let �i denote the true (but unknown) bias associated with pair i , that is, the
log of the effect estimate that the study for pair i would have returned had it been infinitely large. As in
the standard p-value computation, we assume that yi is normally distributed with mean �i and standard
deviation �i . Note that in traditional p-value calculation, �i is always assumed to be equal to zero, but
that we assume the �i ’s, arise from a normal distribution with mean � and variance �2. This represents
the null (bias) distribution. We estimate � and �2 via maximum likelihood. In summary, we assume
the following:

�i �N
�
�; �2

�
; and

yi �N
�
�i ; �

2
i

�
where N.a,b/ denotes a Gaussian distribution with mean a and variance b, and estimate � and �2 by
maximizing the following likelihood:
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We compute a calibrated p-value that uses the empirical null distribution. Let ynC1 denote the log of the
effect estimate from a new drug–outcome pair, and let �nC1 denote the corresponding estimated standard
error. From the aforementioned assumptions and assuming �nC1 arises from the same null distribution,
we have the following:

ynC1 �N
�
O�; O�2C �2nC1

�
When ynC1 is smaller than O�, the one sided p-value for the new pair is then

ˆ

0
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whereˆ(�) denotes the cumulative distribution function of the standard normal distribution. When ynC1
is bigger than O�, the one sided p-value is then

1�ˆ

0
B@ ynC1 � O�q
O�2C �2nC1

1
CA

Throughout the paper, we have converted these to a single two-sided p-value by taking the lowest of the
upper and lower bound p-value and multiply it by 2. The R-code for estimating the null distribution and
calibrating the p-value can be found in the Supporting information, Appendix D.

3. Results

Our replication of the published studies produced similar results. The original cohort study reported an
odds ratio of 6.4 (95% CI 2.2–18.3, p < 0:001) for isoniazid and acute liver injury, compared with an
odds ratio of 4.0 (95% CI 2.7–6.0, p < 0:001) found in our reproduction. In total, we identified 2807
subjects that were exposed to the drug, for a total of 384,659 days. In the whole population cover by the
database, 264,122 subjects met our criteria for acute liver injury.

The original case–control study reported an odds ratio of 2.4 (95% CI 2.1–2.7, p < 0:001) for ser-
traline and upper GI bleeding, while our reproduction yielded an odds ratio of 2.2 (95% CI 1.9–2.5,
p < 0:001). The original self-controlled case study of the same relationship reported an incidence rate
ratio of 1.7 (95% CI 1.5–2.0, p < 0:001) compared with an incidence rate ratio of 2.1 (95% CI 1.8–2.4,
p < 0:001) found in our reproduction. In total, 441,340 subjects were exposed to sertraline for a
total duration of 108,759,375 days. In the entire database, 108,882 subjects met our criteria for upper
GI bleeding.

3.1. Distribution of negative controls

We applied the three study designs to the negative controls for the respective health outcomes of interest.
Figure 1 shows the estimated odds ratios and incidence rate ratios, which can also be found in tabular

form in the Supporting information, Appendix C. For the case–control and SCCS designs, applying the
same study design to other drugs was straightforward. For the cohort method, most drugs had different
comparator groups of patients and required recomputing propensity scores. For three of the negative
controls for acute liver injury and 23 of the negative controls for upper GI bleeding, there were not
enough data to compute an estimate, for instance, because none of the cases and none of the controls
were exposed to the drug. However, an initial investigation in the minimum number of required controls
showed the remaining number sufficed (Supporting information, Appendix E). Note that the number
of exposed subjects varies greatly from drug to drug, from 67 subjects being exposed to neostigmine
to 884,644 individuals having exposure to fluticasone (Supporting information, Appendix C). These
differences account for the majority in variation of the widths of the confidence intervals.

From Figure 1, it is clear that traditional significance testing fails to capture the diversity in estimates
that exists when the null hypothesis is true. Despite the fact that all the featured drug–outcome pairs are
negative controls, a large fraction of the null hypotheses are rejected. We would expect only 5% of neg-
ative controls to have p < 0:05. However, in Figure 1A (cohort method), 17 of the 34 negative controls
(50%) are either significantly protective or harmful. In Figure 1B (case–control), 33 of 46 negative con-
trols (72%) are significantly harmful. Similarly, in Figure 1C (SCCS), 33 of 46 negative controls (72%)
are significantly harmful, although not the same 33 as in Figure 1B.

These numbers cast doubts on any observational study that would claim statistical significance using
traditional p-value calculations. Consider, for example, the odds ratio of 2.2 that we found for sertraline
using the case–control method, we see in Figure 1B that many of the negative controls have similar or
even higher odds ratios. The estimate for sertraline was highly significant (p < 0:001), meaning the null
hypothesis can be rejected on the basis of the theoretical model. However, on the basis of the empirical
distribution of negative controls, we can argue that we cannot reject the null hypothesis so readily.

3.2. Calibration of p-values

Using the empirical distributions of negative controls, we can compute a better estimate of the probabil-
ity that a value at least as extreme as a certain effect estimate could have been observed under the null
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Figure 1. Forest plots of negative controls. Lines show 95% confidence interval. Orange indicates statistically
significant estimates (two-sided p < 0:05), and blue indicates non-significant estimates.

Table I. Estimated mean O� and O�
variance of the empirical null distribution
for the three study designs.

Design O� O�

Cohort �0:05 0.54
Case–control 0.90 0.35
SCCS 0.79 0.28

hypothesis. For the three designs we considered, Table I provides the maximum likelihood estimates for
the means and variances of the empirical null distributions. Interestingly, in our study, while the cohort
method has nearly zero bias on average, the case–control and SCCS methods are positively biased on
average. It is important to note that for all three designs, O� is not equal to zero, meaning that the bias in
an individual study may deviate considerably from the average.

When eliminating the six drugs where we expect confounding by indication, the estimated parameters
for the case–control design change slightly to O�D 0:76 and O� D 0:22.

Figure 2 shows for every level of ˛ the fraction of negative controls for which the p-value is below ˛,
for both the traditional p-value calculation and the calibrated p-value using the empirically established
null distribution. For the calibrated p-value, a leave-one-out design was used: for each negative control,
the null distribution was estimated using all other negative controls. A well-calibrated p-value calcula-
tion should follow the diagonal: for negative controls, the proportion of estimates with p < ˛ should be
approximately equal to ˛. Most significance testing uses an ˛ of 0.05, and we see in Figure 2 that the
calibrated p-value leads to the desired level of rejection of the null hypothesis. For the cohort method,
case–control, and SCCS, the number of significant negative controls after calibration is 2 of 34 (6%), 5
of 46 (11%), and 3 of 46 (5%), respectively.

Applying the calibration to our three example studies, we find that only the cohort study of isoniazid
reaches statistical significance: p D 0:01. The case–control and SCCS analysis of sertraline produced
p-values of 0.71 and 0.84, respectively.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2013
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Figure 2. Calibration plots. Each subplot shows the fraction of negative controls with p < ˛, for different levels
of ˛. Both traditional p-value calculation and p-values using calibration are shown. For the calibrated p-value, a

leave-one-out design was used.

Figure 3. Traditional and calibrated significance testing. Estimates below the dashed line (gray area) have
p < 0:05 using traditional p-value calculation. Estimates in the orange areas have p < 0:05 using the cali-
brated p-value calculation. Blue dots indicate negative controls, and the yellow diamond indicates the drugs of

interest: isoniazid (A) and sertraline (B and C).

3.3. Visualization of the calibration

A graphical representation of the calibration is shown in Figure 3. By plotting the effect estimate on
the x-axis and the standard error of the estimate on the y-axis, we can visualize the area where the
traditional p-value is smaller than 0.05 (the gray area below the dashed line) and where the calibrated
p-value is smaller than 0.05 (orange area). Many of the negative controls (blue dots) fall within the gray
area indicating traditional p < 0:05, but only a few fall within the orange area indicating a calibrated
p < 0:05.

In Figure 3A, the drug of interest isoniazid (yellow diamond) is clearly separated from the negative
controls, and this is the reason we feel confident we can reject the null hypothesis of no effect. In
Figure 3B and C, the drug of interest sertraline is indistinguishable from the negative controls. These
studies provide little evidence for rejecting the null hypothesis.

3.4. Literature analysis

The medical literature features many observational studies that use traditional significance testing to
assert whether an effect was observed. Assuming that these studies have similar null distributions as our
three example studies, we can test whether for historical significant findings, we can still reject the null
hypothesis after calibration. Using an elaborate PubMed query (Supporting information, Appendix F),
we identified 31,386 papers published in the last 10 years that applied a cohort, case–control, or SCCS
design in a study using observational healthcare data. Through an automated text-mining procedure, we
extracted 4970 articles where a relative risk, hazard, odds, or incidence rate ratio estimate was mentioned
in the abstract. These estimates were accompanied by either a p-value or a confidence interval, and we

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2013
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Figure 4. Effect estimates extracted from MEDLINE abstracts of observational studies using healthcare
databases, by publication year. The number of estimates reaching statistical significance (p < 0:05) is estimated
using four assumption on the null distribution: no bias (traditional significance testing): meanD 0, SDD 0; small

bias: meanD 0, SDD 0.25; medium bias: meanD 0.25, SDD 0.25; large bias: meanD 0.5, SDD 0.5.

used these to back calculate the standard error, allowing us to recompute the calibrated p-value under
various assumptions of bias. The full list of estimates and recomputed p-values can be found in the
Supporting information, Appendix G.

Figure 4 shows the number of estimates per publication year. The vast majority of these estimates
(82% of all estimates) are statistically significant under the traditional assumption of no bias. But even
with the most modest assumption of bias (mean D 0, SD D 0.25), this number dwindles to less than
half (38% of all estimates). This suggests that at least 54% of significant findings would be deemed
non-significant after calibration. With an assumption of medium size bias (mean D 0.25, SD D 0.25),
the number of significant findings decreases further (33% of all estimates), and assuming a larger but
still realistic level of bias leaves only a few estimates with p < 0:05 (14% of all estimates).

4. Discussion

Our reproduction of three observational studies published in literature produced similar odds and rate
ratios, giving confidence that our studies are representative of real-world studies. Applying the same
study design to sets of negative controls showed that all three studies were plagued by residual system-
atic error that had not been corrected for by the various study designs and data analyses. We do not
believe that this problem is unique to our three studies, nor do we believe that these study designs are
particularly bad designs. The papers from which the designs were borrowed represent excellent scien-
tific studies, and Tata et al. [9] even went as far as including an SCCS in their analysis, a method that
is believed to be less vulnerable to systematic error [6]. We therefore must conclude that this problem is
intrinsic to observational studies in general.

The notion of residual systematic error has already found some acceptance with methodologists, and
several approaches for computing the potential impact of systematic error using a priori assumptions on
potential source of error do exist (see [19] for an excellent review). However, very few observational
studies have actually applied these techniques. Reasons for this include the need to make various sub-
jective assumptions on the nature and magnitude of the systematic error, which themselves are subject
to uncertainty, and the fact that some of these methods are highly complex. Using negative controls to
empirically estimate the bias in a study provides a straightforward approach of interpreting the outcome
of a study. The observed null distribution incorporates most forms of bias, including residual confound-
ing, misclassification, and selection bias. The error distribution resulting from this bias (which does not
depend on sample size) can be added to the random error distribution (which is based on sample size) to
produce a single intuitive value: the calibrated p-value.

Our research is strongly related to previous research on estimating the false discovery rate (FDR)
[20–22], where an empirical null distributed is computed for either ´-values or p-values [22]. However,
FDR methods were developed for analyzing high-throughput data representing many similar hypothesis
tests. Most important, these tests typically have the same sample size and corresponding standard error.
In the observational studies we investigated, we found widely differing standard errors even when using
the same outcome, method, and database, primarily because of differences in drug prevalence. When
applying FDR methods using ´-value or p-value modeling, we found these methods had a counterin-
tuitive property: large sample size (low standard error) could compensate for bias. For example, even
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when it was clear that a method was highly positively biased, we found highly prevalent drugs with
effect estimates barely above one were still deemed statistically significant using these methods because
of the large original ´-value or small original p-value. Our intuition is that bias is irrespective of sample
size and would remain present even in an infinitely large sample. We have therefore chosen to model
our null distribution on the basis of the effect estimate, taking standard error into account as a measure
of uncertainty.

We have demonstrated our approach in the field of drug safety but expect it could be applicable in
other types of observational studies as well, as long as suitable negative controls can be defined. The
most important characteristic of negative controls, apart from the fact that they are known not to cause
the outcome, is that they somehow represent a sample of the bias that could be present for the exposure
of interest. A completely random variable would make a poor negative control, because the bias will
be zero, which is not what we would expect for any meaningful exposure of interest. For example, in
nutritional epidemiology, other food types are most likely good negative controls, but the last digit of
someone’s zip code is not.

One of the limitations of our study is the assumption that our negative controls truly represent drug–
outcome pairs with no causal relationship. However, a few erroneously selected negative controls should
not change the findings much, and we find it hard to believe that a large number of our negative controls
are wrong. In FDR methods [20] where there is no information on the presence of causal relationships,
the majority of relationships (>90%) is simply assumed to be negative. Furthermore, we cannot say with
certainty to what extent the results presented here are generalizable beyond the two databases (GE and
Thomson MarketScan Medicare Supplemental Beneficiaries) used here. In no way would we suggest
that the null distributions in other databases are comparable, even when using the same study design and
analysis. For every database, the calibration process described here will have to be repeated. Another
limitation is the notion that the same data, study design, and analysis can be used for different drugs.
Although studies often already include more than one drug (for example, Tata et al. [9] studied both
SSRIs and non-steroidal anti-inflammatory drugs), for some drugs, the study design would be deemed
less appropriate because of known bias that would not be corrected for. For example, we identified
some of our negative controls that might be confounded by indication, which might preclude the use
of a case–control design. By removing those controls, we see only small changes in the fitted distribu-
tion. Furthermore, because we cannot pretend to know all bias that is present for the drug of interest,
we would like to argue that we should include such negative controls to account for potential gaps in
our knowledge.

For two of our three examples, we could not reject the null hypothesis of no effect after calibration,
even though originally all three were considered highly statistically significant. The analysis of the effect
estimates found in literature showed that the majority of significant results fail to reject the null hypoth-
esis when even making the most modest assumptions of bias. This is in line with earlier estimations that
most published research findings are wrong [5], although in this previous work, the main focus was on
selective reporting bias (e.g., publication bias), which we have not even taken into consideration here.
Reality may even be grimmer than our findings suggest, which is troubling because the evidence of these
observational studies is widely used in medical decision making.

The method proposed here aims to correct the type I error (erroneously rejecting the null hypothesis)
level, most likely at the cost of vastly increasing the number of type II errors (erroneously rejecting the
alternative hypothesis). Ideally, we would improve our study designs to better control for bias, which
would result in O� and O� approaching 0, and thereby maximizing statistical power after calibration. In
that case, our approach would no longer be needed for calibration, only to show that bias has been dealt
with. However, as shown here, the study designs currently pervading literature fall short of this goal, and
more work is needed to reach this (potentially unobtainable) goal.

We recommend that observational studies always include negative controls to derive an empirical null
distribution and use these to compute calibrated p-values.

Acknowledgements

The Observational Medical Outcomes Partnership (OMOP) was funded by the Foundation for the National Insti-
tutes of Health (FNIH) through generous contributions from the following: Abbott, Amgen Inc., AstraZeneca,
Bayer Healthcare Pharmaceuticals, Inc., Bristol-Myers Squibb, Eli Lilly & Company, GlaxoSmithKline, Janssen
Research and Development LLC, Lundbeck, Inc., Merck & Co., Inc., Novartis Pharmaceuticals Corporation,

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2013



M. J. SCHUEMIE ET AL.

Pfizer Inc., Pharmaceutical Research Manufacturers of America (PhRMA), Roche, Sanofi, Schering-Plough Cor-
poration, and Takeda. At the time of publication of this paper, OMOP has been transitioned from FNIH into the
Innovation in Medical Evidence Development and Surveillance (IMEDS) program at the Reagan-Udall Founda-
tion for the Food and Drug Administration. Dr. Ryan is an employee of Janssen Research and Development LLC.
Dr. DuMouchel is an employee of Oracle Health Sciences. Dr. Schuemie received a fellowship from the Office of
Medical Policy, Center for Drug Evaluation and Research, US Food and Drug Administration, and has become
an employee of Janssen Research and Development LLC since completing the work described here.

References
1. Mayes LC, Horwitz RI, Feinstein AR. A collection of 56 topics with contradictory results in case-control research.

International Journal of Epidemiology 1988; 17:680–685.
2. Ioannidis JP, Tarone R, McLaughlin JK. The false-positive to false-negative ratio in epidemiologic studies. Epidemiology

2011; 22:450–456.
3. Green J, Czanner G, Reeves G, Watson J, Wise L, Beral V. Oral bisphosphonates and risk of cancer of oesophagus,

stomach, and colorectum: case-control analysis within a UK primary care cohort. BMJ 2010; 341:c4444.
4. Cardwell CR, Abnet CC, Cantwell MM, Murray LJ. Exposure to oral bisphosphonates and risk of esophageal cancer.

Journal of the American Medical Association 2010; 304:657–663.
5. Ioannidis JP. Why most published research findings are false. PLoS Medicine 2005; 2:e124.
6. Farrington CP, Nash J, Miller E. Case series analysis of adverse reactions to vaccines: a comparative evaluation. American

Journal of Epidemiology 1996; 143:1165–1173.
7. Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal effects. Biometrika

1983; 70:41–55.
8. Smith BM, Schwartzman K, Bartlett G, Menzies D. Adverse events associated with treatment of latent tuberculosis in the

general population. Canadian Medical Association Journal 2011; 183:E173–179.
9. Tata LJ, Fortun PJ, Hubbard RB, Smeeth L, Hawkey CJ, Smith CJ, Whitaker HJ, Farrington CP, Card TR, West J. Does

concurrent prescription of selective serotonin reuptake inhibitors and non-steroidal anti-inflammatory drugs substantially
increase the risk of upper gastrointestinal bleeding Alimentary Pharmacology & Therapeutics 2005; 22:175–181.

10. McAfee AT, Ming EE, Seeger JD, Quinn SG, Ng EW, Danielson JD, Cutone JA, Fox JC, Walker AM. The com-
parative safety of rosuvastatin: a retrospective matched cohort study in over 48,000 initiators of statin therapy.
Pharmacoepidemiology and Drug Safety 2006; 15:444–453.

11. El-Serag HB, Everhart JE. Diabetes increases the risk of acute hepatic failure. Gastroenterology 2002; 122:1822–1828.
12. Jinjuvadia K, Kwan W, Fontana RJ. Searching for a needle in a haystack: use of ICD-9-CM codes in drug-induced liver

injury. American Journal of Gastroenterology 2007; 102:2437–2443.
13. Chan KA, Truman A, Gurwitz JH, Hurley JS, Martinson B, Platt R, Everhart JE, Moseley RH, Terrault N, Ackerson L,

Selby JV. A cohort study of the incidence of serious acute liver injury in diabetic patients treated with hypoglycemic
agents. Archives of Internal Medicine 2003; 163:728–734.

14. Abraham NS, Cohen DC, Rivers B, Richardson P. Validation of administrative data used for the diagnosis of upper gas-
trointestinal events following nonsteroidal anti-inflammatory drug prescription. Alimentary Pharmacology & Therapeutics
2006; 24:299–306.

15. Cooper GS, Chak A, Lloyd LE, Yurchick PJ, Harper DL, Rosenthal GE. The accuracy of diagnosis and procedural codes
for patients with upper GI hemorrhage. Gastrointestinal Endoscopy 2000; 51:423–426.

16. Andrade SE, Gurwitz JH, Chan KA, Donahue JG, Beck A, Boles M, Buist DS, Goodman M, LaCroix AZ, Levin TR,
Platt R. Validation of diagnoses of peptic ulcers and bleeding from administrative databases: a multi-health maintenance
organization study. Journal of Clinical Epidemiology 2002; 55:310–313.

17. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for detecting confounding and bias in observational
studies. Epidemiology 2010; 21:383–388.

18. Tisdale JE, Miller DA. Drug-Induced Diseases. American Society of Health-System Pharmacists: Prevention, Detection,
and Management, Bethesda, MD 2010.

19. Gustafson P, McCandless LC. Probabilistic approaches to better quantifying the results of epidemiologic studies.
International Journal of Environmental Research and Public Health 2010; 7:1520–1539.

20. Efron B. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the American Statistical
Association 2004; 99:96–104.

21. Langaas M, Lindqvist BH, Ferkingstad E. Estimating the proportion of true null hypotheses, with application to DNA
microarray data. Journal of the Royal Statistical Society Series B 2005; 67:555–572.

22. Strimmer K. A unified approach to false discovery rate estimation. BMC Bioinformatics 2008; 9:303.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2013


