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THE GENERALIZATION OF ‘STUDENT’S’ PROBLEM
WHEN SEVERAL DIFFERENT POPULATION
VARIANCES ARE INVOLVED

By B. L. WELCH, B.A., Pu.D.
1. Introduction and summary. Let 7 be a population parameter which is estimated by an
k
observed quantity y, normally distributed with variance 2. Let os = ¥ A;0%, where the
i=1

A; are known positive numbers and the o% are unknown variances. Suppose that the observed
data provide estimates s? of these variances, based on f; degrees of freedom, respectively,
so that the sampling distribution of 2 is

1 (fish\¥i? 1f;8% i5F
et = ) o] 357 i) )
and that these estimates are distributed independently of each other and of y.

A very simple particular case of this set-up occurs when we have samples of n; and n,,
respectively, from two normal populations with true means «, and a, and standard devia-
tions oy and o,. If 7 is the true difference (a, — a,) between the means, the estimated difference
is y = (¥, —7,). The variance of the estimate is o} = (1,02+A,03), where A, = 1/n, and
Ay = 1/n,. The estimated values of 0% and o3 are s? = X /f; and s = Z,/f,, where X, and X,
are the respective sums of squares of observations from the individual sample means and
Ji=(n;—1) and f, = (ny— 1). These s* are distributed in the form (1) and the postulated
conditions of independence hold.

Another particular case, again with £ = 2, arises when we wish to compare two regression
coefficients, fitted to independent sets of data, without making the assumption that the
population residual variance about the true regression line is the’same for both sets.

The present paper is written mainly with these practical applications of the case & = 2
in mind, but the results are expressed generally for any k, since no further analytical diffi-
culties are involved. It will be shown how probability statements about y, considered as
an estimate of 7, may be made similar in character to those which W. S. Gosset derived for
the mean of a single sample of n observations (‘Student’, 1908). We shall, in effect, seek a
quantity %, calculable from the observations, with the property that the chance of the
difference (y —7) falling short of % is a given probability P. It is clear that A must be a
function of the individual variances s? and of P. If the abbreviation Pr. is used to mean
‘the probability of the relation in the bracket following’, our problem is to satisfy the
equation

Pr.[(y—n)<h(s?s2,...,s%, P)] = P. (2)
In Gosset’s case the solution was, of course, simply
Pr.[(Z—a)<tps/{yn] = P, (3)

where {5 is the value, corresponding to the probability level P, in the ‘Student’ ¢-distribution
with f = (n— 1) degrees of freedom.
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In the next section the mathematical derivation of the exact solution of (2) is given. This
is then followed by some consideration of its expression in numerical terms. First, a series
solution in powers of 1/f; is developed, which may be used for calculating tables. Then some
comparisons are made with a non-series approximate solution which is based on a particular
way of regarding the distribution of a quantity of the general form z = (Za,¥3).

Some brief discussion is then added which may serve to place the present contribution
in its proper relationship to other papers which have been written on this topic.

Finally, it is shown how the inequality (2) may be adapted to provide an interval estimate
for .

2. Mathematical derivation of solution. Let j(s2,s2, ..., s%, P) denote the probability that
(y—7n)isless than h(s3, 83, ..., 82, P), given s (i = 1,2, ..., k). Then, since y is distributed quite
independently of the estimated variances, we have

2 2 2
h(s3, 82,..., 8, P)

. - P 1 (h(s3, 83, ..., 8%, P)
82,82 ...,82 P) = f V/(EAT) ety — [T 0 ke R 4
.7( 1 o2 k ) " — \/(277,) l \/(Zato,?) ( )
where I is used to denote the normal probability integral. The condition of equation (2) is
then simply that, if j(s3, s3, ..., s}, P) is averaged over the probability distributions of s? as
given by (1), the result will equal P. Thus

[ fitst st Y LR = P. )

Now we may expand j(s?,s2, ..., si, P) about an origin (0%,03%, ...,0%) in a Taylor expansion.
Thus
(3,82, ...,8%, P) = exp [2.','(82—0' ) 0,15(wy, Wy, ..., wy, P), (6)

it being understood that the exponential is to be expanded in a power series in 0; and that
0, is to be interpreted so that

. o .
0T j(wy, Wy, ..., wy, P) = [a—ﬁy(wl,wz,...,wk, P)] - (7)

On making the substitution of (6) into (5) our result may be written

0j(wy, wy, ..., wy, P) = P, (8)
where © = [T |exp (s} —0})0;1p(s?) ds}. (9)

Now, substituting into (9) from (1), the integral comes out in simple form, i.e.

2
{ 2‘}3} ‘exp[—0?3,]

2
— exp| —Z0%0,— 1571 g(l— "iaf)}
P) fi
2 6 8 N4
oj,a +4L°J‘a?+22"f +e tc}

o (4 0":83 1( 002
= 1+2—}t—+{ P e 7 (2 7 )}+etc. (10)

IS

i

= exp, '2:
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Substituting (4) into (8) we have finally
h(wy, wg, ..., wy, P)|
vt B
This, in a very condensed form, is the solution to our problem.* The operator @ constitutes
a direction to earry out the partial differentiations indicated by (10). w; must then be equated

to o2. The solution of the resulting equation will give (03,03, ...,0%, P) and therefore the
required A(s3,s%,...,s8, P).

(11)

3. The development of the series solution. It will be convenient to write A(w) for
h(wy, w,, ..., wy, P) and § for the normal deviate such that I(§) = P. We may then expand

h(w) . . . .
1 {m——} in a Taylor series about £ as origin. Thus

i h(w) hw)
w ' w
Hisnen) - = fanen—4 2] 10 (12
it being understood that the exponential is to be expanded in powers of D, and that these
powers are to be interpreted so that

Dri(w [d - v] . (13)
Equation (11) then becomes

Oexp l:{ Z'(/{”az } D] (14)

This may now be solved by successive approximations.
The initial approximation is the large-sample normal approximation

w) = gx/(Z/\iwi)a (15)

= gJ(ZAiwi)+h1(w)+h2(w)+etc., (16)
where k,(w) includes terms of order 1/f;, hy(w) terms of order 1/f# and so on. For the moment
we shall treat terms of the order 1/f? as negligible. Then (14) gives

-l o
ie. Oexp[gb{ ZA % }:I[ «/2)(1 {f.&? Dl)+%h%2(§?£2} ...:II(U) = I(§). (18)
Or, using (10) !
Fernes P(@«{ st )1

[ R el )

e e B e oo

The equation of the first order term to zero gives

and we may write

bk
14£2 x
hot) = Ig )((z/\i{;g)%)

* Equation (11) can also be expressed as an integral equation and this form may be necessary for
-providing numerical values where-the f; are very small.

(20)
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This can then be substituted in the second-order term which, when equated to zero, will
give hy(0?). The process may obviously be extended to higher orders, although the expressions
become so complex that a slightly different procedure has then been found to be preferable.
To terms of order 1/f2 our solution is

AZst ST
2
1 1 2 2

A3t (A2t
+(3+5§2+§‘)(2 f? )_(15+32§2+9§‘)(2 fi ) ] (21)
' 3 (ZA;8%)3 32 (ZAs2)t |

It may be noted that in the particular case £ = 1, this reduces, as it should, to the already
known expansion of the deviate of the straightforward ‘Student’ distribution (Fisher,
1941, p. 151), viz.

1+§2 (3+ 16£2 + 5&%)
= 7 .. 22
tp gl:l + + 96/ +ete (22)
It is proposed in another communication to give tables of k(s2) based on the expansion
(21) carried to some further terms.

4. Discussion of a non-series approximation. It will be recalled that in Gosset’s original
approach to the single sample problem (‘Student’, 1908) his initial step was to note that the
first four moments of the distribution of s were consistent with, the assumption that the
distribution could be represented by a Pearson Type III curve. He was fortunate in this
way to rediscover a distribution which had already been found by Helmert, as this permitted
him to go on to the derivation of the ¢-distribution. In our present case, as in many others
arising naturally in statistical work, we are led to consider, instead of s2, a linear function
2'A; 8% of several s. If this linear function were distributed in a Pearson Type III distribution
a whole range of new problems could be dealt with by well-established theory. However, in
general, we do not have this good fortune. For XA, s? is of the form Za, x3, where a;, = A,02/f;,
and the distribution of this quantity is only of Type III if all the a,, except one, are zero, or
if all the a; happen to be equal.

Nevertheless, for practical purposes an approximation to the distribution of XA, s2, using
a Type I1I curve with start, mean and variance suitably adjusted, can still be useful. In two
previous papers (Welch, 1936, 1938) I have employed this method to obtain numerical com-
parisons of the merits of different statistical procedures, where full calculations with the
true distributions would have been unduly laborious. The method of determining the con-
stants in the approximation was given for the case k = 2 in the first of these papers and is
as follows.

If z = (ax3+bx3), and the approximate distribution curve is written in the form

d U iem (2)7 7 (2 23
et = e () ) )
then making the first two moments of (23) agree with the true moments of z, we find

f= (afy +bfy)? _ a¥fi +b%, (24)

ity I afwbf,
Phrasing the matter rather differently, we can say that z/g is approximately distributed as
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X2 with degrees of freedom f. Of course f, given by (24), will in general be fractional, but the
letter used to designate this quantity was chosen, and the term ‘effective degrees of freedom’
has been used, because by doing so we can appeal immediately to a considerable body of
further theoretical results.

In particular we can say that the criterion

)
U= st Apsd) (25)

follows approximately the ‘Student’ ¢-distribution with degrees of freedom
(A0 +A,0%)

Y I T (26)
fi T h
More generally, when k is not restricted to 2, the same line of argument leads us to say
that the criterion (y—19)
v=—t (27)
J(E2;83)
is approximately distributed as ‘Student’s’ ¢ with degrees of freedom
= (ZA,02)2
o g (28)
Ji

Not knowing the o;’s in (28), there are several ways in which we may now proceed, depending
on what weight we may be willing to attach to any vague a priori notions we may possess
of their relative magnitudes (cf. Welch, 1938). If we are not willing to assume anything,
perhaps the best choice is

(EN,8)" _2( f/\i 2)

A2st
(Zf it 2)

It may be shown that the numerator of (29) has, in repeated samples, an average value
(22;0%)?, and the denominator has average value ZA20%/f;. In a certain sense, therefore,
(29) is a fair estimate of (28).

To sum up, then, the interpretation of y as an estimate of #, using the present type of
approximation involves only the reference of the criterion (27) to tables of the ‘Student’
distribution, entered with degrees of freedom given by (29).

Some further light is now thrown on this procedure by the expansion for the exact solution
of our problem derived in the preceding section. For the implications of referring v to the
‘Student’ distribution may be seen by substituting f from (29) into the expansion (22) of
the ‘Student’ deviate. On doing this and then expanding in powers of 1/f; it is found that,
in effect, our approximation corresponds to assuming that

f=

(29)

A2st As
b DI L
1+g2)( ft) (1+£2( f2)
%) = EJ(ZA;s)) ]+ 4 (A8 2 (2As)e

51 + 64£2 + 5&4 ;
+( + 64£% 4 5£1) fzz +.. | (30),
96 (ZA; %)t
whereas, in fact, the true solution is given by (21). Comparison shows that we have exact
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agreement to terms of order 1/f; and in the first of the quadratic terms. To the second order
the difference between the expressions in square brackets in equations (21) and (30) is

5
(3+5g2+€4){ f% _ fi } (31)
3 |\CAs  Caar )

This difference vanishes if any one of the s? is overwhelmingly larger than all the others, or
if s%is proportional to f;/A,. It appears that, in general, the difference is not likely to be large.
We have, therefore, found some justification for using the Type III approximation in the
present case.

The above comparison has been made on the basis of the series developments, but it should
be borne in mind that approximations based on positive frequency functions, such as those
falling under the Pearson system, usually provide a higher degree of accuracy than might
appear from any consideration of expansions. Furthermore, they are apt to give an insight
into the nature of the situation which may sometimes be lost in working out the details of
exact solutions. In the present case I feel that the comparison of this section serves to give
added confidence in the exact solution,* which I have put forward in the previous two
sections, quite as much as it demonstrates the value of the approximate method.

5. Further discussion. In comparing the present contribution with other work on the
subject, the essential point to notice is the averaging process involved in equation (5). We
are not trying here to make probability statements valid for fized s?, but are averaging over
the joint probability distribution of the s?, taking into account, therefore, the different
values which can arise by chance in sampling from populations with fixed o2

This averaging over the joint distribution of the s? is parallel to the step taken in
Section III of Gosset’s original memoir (1908) where, in effect, he starts with the distribution
of ¢t for samples with fized s and then averages over the distribution of s which he has already
derived earlier. He thus arrives at the unrestricted distribution of ¢ (or, more strictly, of a
quantity 2z, which is equal to ¢ multiplied by a constant). This distribution forms the basis
of the significance tests which he illustrates in his Section IX and of the method of deriving
interval estimates for the population mean which he outlines in his Section VIII.

In the present paper the parallelism with Gosset’s work may be obscured to some extent
by the fact that we do not from the outset seek the probability distribution of some pivotal
quantity like ¢, explicitly expressed. It so happens that we are able to procéed to a method
of deriving an expansion for the required probability level without making explicit reference
to such a quantity. Nevertheless there remains the important resemblance with Gosset’s
development, in that we do not confine ourselves to samples with fixed s2.

This procedure stands in sharp contrast to the formulation of the problem of comparing
two means, favoured by R. A. Fisher (e.g. 1941) and H. Jeffreys (1940). These writers
prefer a solution which they ascribe initially to W. U. Behrens (1929). Looked at from one
point of view, Behrens’s paper appears to contain some gross algebraical errors. Fisher and
Jeffreys, however, develop lines of argument by means of which they claim that Behrens’s
solution is quite justified. It seems to me difficult to say how far (if at all) any of these
arguments may have been in Behrens’s mind when he wrote his paper and T shall not
attempt to elucidate this question here. We may, however, permit ourselves one observation
about the developments according to Fisher and Jeffreys.

* Exact in the sense that it is indepéndent of the irrelevant population parameters o2,
Biometrika 34 3
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Both these writers, at some stage, limit the field of their probability inferences to a sub-
set in which the s2 are regarded as fized. In order to solve the problem on these lines Jeffreys
introduces an a priori distribution function for the unknown o, following his general
philosophy for dealing with such questions. Fisher, on the other hand, arrives at the same
answer by a special utilization of what he terms the fiducial distribution of o;.

Jeffreys’s approach here does not raise any new issues to those who are familiar with the
general body of his researches on statistical inference. Fisher’s justification of Behrens’s
solution is perhaps of more immediate interest as it raises controversial points which are
important more specifically in relation to our present topic of discussion. For although
Fisher’s approach has been very much criticized by a number of writers, starting with
M. S. Bartlett (1936), the critics have not wished to throw doubt on the whole body of
results which Fisher includes under the heading of fiducial inference. The criticism has been
for the most part selective, directed mainly at the way in which so-called simultaneous
fiducial distributions of several parameters have been defined and manipulated.

I have, myself, quite definite views on these questions (particularly on the usage of the
word ‘fiducial’) but do not feel that I need express them at any great length here. I dis-
agree with Fisher, but this divergence of opinion must already have become apparent in
the way I have defined the field within which I make my probability inferences about 7.
It appears to me to be quite artificial to restrict our view to one which, even in a limited
sense, fixes s2. It is true that, in the two-sample problem, we have to draw our inferences
from the unique pair of samples observed, or, more precisely, from the statistics Z;, Z,, s?
and s which they provide. These statistics are our only data for the purpose of making
inferences, but we add something to these data in the interpretation when we regard the
samples as being drawn randomly from hypothetical normal populations. Once having
embarked on this method of interpretation, we should stick to it consistently throughout.
The sampling variations of s? should be taken into account only by a direct use of the
probability distributions as given by our equation (1) and not by any inversion such as is
involved in Fisher’s conception of the fiducial distribution of o2. As we have seen, it is
quite possible to make probability statements about the difference between the population
means without making any reference whatever either to inverse probability or to fiducial
distributions.

The distinction between the procedure which Fisher advocates and one which averages
over the s? distributions has, of course, been stréssed by most of the writers who have
contributed papers on the subject, from whatever viewpoint (e.g. Bartlett, 1936, p. 566,
and Yates, 1939.) What has been lacking hitherto, however, is a solution, analogous to
Gosset’s single sample solution, which makes complete use of the information contained
in the data provided. Bartlett indicated one particular way in which probability inferences
about the difference between two population means might be made, but was careful to point
out that the problem of making the best possible inferences (in the theoretical sense of
utilizing all the information in the data to its full extent) was still an open one. There has
indeed been some doubt expressed whether a fully satisfactory solution from this point of
view existed at all. I believe, however, that the one I advance above in equation (11),
and develop in equation (21), meets all the requirements that one can reasonably expect.

Whatever conclusion the reader may come to on these matters, however, he will probably
wish to know how, in the numerical details, this solution will differ from that of Behrens.
This will be more easily seen when some tables become available, but fortunately certain
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comparisons can already be made. For Fisher (1941, p. 155) has provided a series ex-
pansion of the Behrens solution. In our notation, and with k=2, this may be written, to

order 1/f;, as follows:

()L2s4+)t282)
(1+£2) 1\ A Aps%s2
h(s?) = £J(A, 83+ Ay83) 14 i (,\jézJ,,\f;z +(f1 fz)T;'ﬁz-Tl;?‘ (32)

Even to this order, this differs from our equation (21) in the inclusion of an extra term. In
other words, although the two solutions are the same when samples are large enough to
adopt the large-sample normal approximation, they differ immediately we take into account
the first corrective term, i.e. they differ as soon as we begin to attach any importance to
‘Studentization’.

6. An interval estimate for 7. We have shown in §§2 and 3 how to calculate a value
h(s3,s3, ...,s}, P), depending on the observed variances s2, 82, ..., s}, such that the probability
is P that (y —n) <h(s3,s3, ...,s%, P). This provides a method of testing the consistency of an
observed y with a prescribed value 7.

When the question is not whether any particular given 7 is contradicted by the data, but
rather one of estimating # and at the same time of providing a measure of the uncertainty
of the estimate, the further step required is immediate. For, as in the case of a single sample,
the order of the words in our probability statement can be changed so that it becomes—the
probability is P that y is greater than {y —h(s?, s3, s3, P)}. An interval estimate for 7 is then
obtained by taking two levels P, and P, for P. Thus the probability is (P, — P,) that 7 lies
between {y —h(s},s3, ..., s}, P)} and {y — h(s3, s, ..., s}, By)}.

If B, = (1—-P) the range will be symmetrically placed about y. Thus, for example, if
P, = 0-95 and P, = 0-05, the chance will be 90 %, that 7 lies within the range

l: ( 2( /\;z)
1+ (1-6449) 2
. 2 )
y+1-6449 . /(ZA;83)| 1+ 1 EXs0 +ete. |. (33)

It may be noted, incidentally, that this range is always narrower than similar ranges
calculated from Behrens’s solution.
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