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"There is I tO /1/o r e ('Ol/l llwn error {han to 
assume that, because pro longf.:d anrl (I 'c [{rate 
mathematicaf carcl/ lo timls ha ve heen made, tlie 
application o f l/ie rCSlI ft to some jac t of Na{ure 
is absolutel\' certailt " 1\ . N. WlIlTHIEAD . 

"igures are not enough. T hey have to be 
interpreted; and the res ult may h C'l[uivocal. 
especially when Ii in g. mater ial is inv lv d. 
because of its variabilit y. Experim ents should 
be sui tabk for te ting tIlL: h pot hcses in whidl 
we are inte rested and as many as possib le l)[ 

the assumptions we hav L: nw k , with maxi
mum precision and wi th the grea test [It)ssibk 
certai nty lhat the co nd usil)ns LIre va lid. To 
achieve this it is best to makc q u nlit aliv..: 
measurements \vhcn 'V·' I" p()ssible . As th e~~ will 
be subject ltl va ri utiun . st ati stica l aIHlly~ i s wil l 
often be necessar befm.; " pl"l! ptT judgl:I1Jent 
of [heir implicu[iclflS call be IllLldL: , J sh~llJ 
attempt tn di scuss Sl) fl h ': nf tIll: assumptin lls 
invo k~d by the usc tl f tiles Il ll't bods alld. ill 
particu lar, ' the cunclusio\ls tha l can I llg Icall ;-, h,' 
drawn front til e res lll ts of their arrlical ilHI. 

T he statist ical method~ cllcnunkred in thc 
biulogical SCi' llCCS me \'u 'y largely [hpSe ()f Sir 
Ronald Fisher ancl hi' sclwnl. ba~L'll nil til L: 
earlier work of Karl Pear. 0 11 Illelh I, c.\ 
pounded in many i)OllhS , e.g. F isher (1 95 1 and 
1954) and Snc kenr ( 1956). There :.I rc . h 1wev.:r. 
at 1t: ~I S t two olh ' r i III norta lit $cho()l s of 1 bo uQh t 
un statistical Ill ct h,)d' anci scient ific ill [,;:1'1': IlC -: 

those of H. Jetfr ys and or J. Neyman anu E . S 
Pearson. Al tholF'h no t enti rely disti nct . they 
especially Jefl reys di ffer 011 cerlain point s. 
These systems of inferenlL: have been l i sc uss~d 
by, e,g. Anscombe ( 1C)4R ), N . 111 a 11 (1 C) 4 1) and 
Hogbe ll 1957). 

PR()IlABII IT )" 

It is perhaps sur pl' i. ing that th ' re is still 11, ) 

sa tisfactory detinitiull of rrobabilit) . A sllh
ject ive definitioll as thL: '\kgrc.:!e ut I'a tiona l 
belief" or "degree of ra lionali I y of be lief" or 
"degree of legiti m!J tt.: cOlwidiun" is uphdd b) 
some, c.g. Key nes.. TIl dasslca! (l aplr ca ll ) 

definition illentiti.es probabil ity with the " rati,) 
of the numb r ot favour bk cas s Lt ) the' total 
number of equiprobabl case~" . ThIS is op 0 
lo criticism a ll logical ground s in that the 

concept to be ddi ned j~ int roduced as part of 
its own d-'finit io n by the word "equipro bable". 
Nev Ttheless \ hen th e refe rence set of "the 
total n um bc.:!r of equiprobable" cases is fin ite , 
this defin ition is always 1I cd and accept d in 
practice. For instance. if ne-quarter of the 
slude nt o( the University of Leeds are female, 
we would asserl tha t the probab ility of a 
studell t ch( scn fl'0 111 thi~ fin ite population being 
female i . 0.25 , provide I tha t it was equ ally 
probable that an ODe of the student. wou ld be 
picked. i . .::: tlla t lh ' choice was mad.:: at randnnl. 
When the referencc popula tl()l1 is; inli ni te. how
ev r. this ddi lli tio ll is ohviou Iy u nsa tis fa ctory. 

The fre'lu' lll':y thcory of pruba bil ity detines 
t h' proha il ily P nf an event as the limiting 
rela liVt' frequency " [ it.o; o(currnce ill a random 
s~y. u nee of trials: l'.g .. as thL tlUmber of tri als 
is e: t ntil'd indefini tely. as wilen a penny is 
t<)sselL if the rl\~4 11ency of heads is 50 per cent. 
we: would say th,ll th' rn)hahil ily lhat a penny 
will corne- dOWll heads is 05. Th is type (1! 
defin itioli sl;ems r ' asollablc. il nd is oft n 
invoked i ll practi ce. ut aga in it is by 110 mean s 
sati sfactory it S a complete. ob jl:ctive definiti on 
(see K n-:al' 1049; Pop[1er Iqsq) R. von Mis s, 
the prindpal ' xpol1enl of a fr" q llency theory, 
has fOllnd il l1 eC s. my lo l'o;:slrict the definition 
to s~qucnccs which ful fi l thc fonowing two con
ditions : (i) Tho;: st:quence is random. i. e. it is 
eq ually probab lc that any adm iss ible subsequent 
even t will folInw any 51 ecified antecedent and 
conta ins no relev, nL ~ llb Ll that wo uld .lead 
to a d ir1'erenl value ()f P; (ii) the rela tive 
frequency of occurrence of til e even t converges 
to a fi xed lim it . p, as the sequence is increased 
indefi nitely. Snch an infi nite eq uence h aUs 
a "col kct ive' " , However th 11r~ t condition 
invokt:~ the con<.:ept ( f "rrobabili ty"- :lgain a 
(' i,'mllls ill de(rl/icl/(/o . A s 'c nd uifficulty is 
raised by thc ",Ixinnl or convergence". Mathe
matically. tbc concep t 11 [ Cl n ergence is np
lll i 'able only tn infinite scquenc s constructed 
:tC(,;1 ['ding to i1 ruk, c,g. k. 1. ~, . ... ,Sll ' h haT 
;.111 the It:rms clf lh - equcnce after a L:o;;r tain term 
K" <.:cr wi th in any given interval. howe 'er small. 
If the limi t. Howev r our !i quence. b ' defini

lion . follows no rule. nd onsequently it bas 
been argued [}lat tbe conditions of convergence 
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and irregularity required by von Mises are 
incompatible. Th is obj ection has been m t by 
Popper (1 959) in his transla tion of his Logi k 
der Forschung (1934) by modifying these 
requi re ments. But Kneale (1949) agrees with 
von M ises that they are necessary for a 
frequency the ry of probability. 

In spite of such objections it is quite usual 
for those who use probability as an aid to 
judgement in research to conceive its meaning 
in terms of frequency in repeated trials, and 
indeed if it is to be any use a t all some such 
concept is necessary unless we adopt a sub
jective definit ion. A ttempts to ob tu in Ull 

objective definition free from objections u ually 
seem even fur ther from the world of reality 
than the "collective" of von Mises (see, e.g:. 
Kneale, 1949). 

DED T TION, INDUCT ION A D K NOWLEDGE 

Deduction may be defined as a process of 
reason ing from known causes, or set of axioms, 
to their resu lts or, more precisely , as an argu
ment in which it wo uld be inconsistent to affirm 
the premises a nd deny the conclu sion. T hi s 
would not neces arily be 0 in an inductive 
argument which i.- concerned with the discovery 
of causal re la tio ns or wi th the drawing of 
conclu sions about a population from observa
tions on sam ples fro m it. 

Philosophers h ave devoted mu ch attention to 
the problem of when, if ever, we can say that 
we "know" son ethi ng. A yer (1956) has said 
that. ex cept where the validity of a statement 
is a condition of its being made at all (such as 
Descartes' proposition "Cogito ergo sum''': "I 
think. therefore I am"), then it is always possible 
that we take something to be true when it is 

. false. T he only way in which new knowledge 
can be arrived at in practical scientific work' is 
by an induc tive process. Such a process can 
never be certain. T he possibi lity of enor 
always remains and , if we are to be strictly 
logica l we must say that no scientific hypothesis 
has been es·ta blished as true. but that it has 
merely not yet been fal sified. Ohviously this 
doe. not mean tha t we can not feel thaL for all 
practical purpose', a proposition h,is been 
established as true and act as though it were 
true, though res rving the possibility that we 
may be subs qL ent1y proved wrong. It is 
interesting that it is equally impo sible to prove 
the validity of deducti r a oning, as we can -

. not show that the axioms on which it is based 

are correct. all we can hope is that the set of 
axiom s is consistent, i.e. they ca nnot lead to 
contradictory deductions. but even if this is so 
it does not prove their correctn ess. 

Popper (1959) is of the opinion that scientitic 
argument does not involve inductive reasoning 
except in so far as it is used to arrive at 
hypotheses. as the process of testing hypothc~cs 
is deductive. i.e .. we deduce from the hypothesis 
the results we would expect if it was true, and 
we do an experiment to see whether these 
predictions are correct. If they are we retain the 
hy pothesis; if not we reject it. However, as 
Ayer (1956) points out, it would not be rational 
lO reject a hypothesis beca Llse it had been 
falsified by our experiment unless we assume 
that the result of rt~ pealing the ex periment will 
be the same in tile future. T his assumption is 
o nly justiliable by inductive reasoning. 

It is obvious that th evidence in support of 
some hypotheses is greater than for others. T he 
qu stion then arise as to whether it is pas ible 
to attach a probabili ty to the assertion tha t a 
hypothesis is true. Such staLement would be 
called one of inverse probability. 

'The thwrel11 of the Rev. T homas Ba cs , 
published posthumously in 1763, has been the 
basis of many att empts to justify inductive 
reasoning. It · proper use is in the situation 
when we have a va lid knowledge of the a priori 
probabilities of certai n conti ngencies. T he 
theorem can then be used to conver t the a priori 
probabili ty into an a posteriori proba bility in 
the light of experimental evidence . or example 
(Fisher 1959a). if two known het rozygous 
(Bb) black mice art: mated, then accord ing to 
Mendelian theory, a black mouse picked at 
random fro m the progeny has an a priori 
probability of being homozygous (BB) of ~ and 
of be ing heterozygous, 1. If on mating this 
mOLlse with a brown mouse (genotype bb) it 
yield s seven oH'spring. all black. we can validly 
use Bayes' theorem to calculate the a posieriori 
probability in th", iight of the ev idence. that the 
hlack nl.ouse chosen was homozygous or hetero
zygous. These turn out to be 64 /65 and 1/ 65 
respectively. Thus in these cin.;u mstances the 
probability that we are correct in asserting that 
the mouse was homozygous is 4 / 65. and we 
haw validly a ttached probability statements LO 

the hy po thes s (the J ossible genotype ') in the 
light of their res ults (t he experimental evidellce). 
Howev r Bayes' method is not applicable in the 
majority of experimental work simply becau e 



the a priori pro babilities are not known. The 
practical worker would find it difficul t to under
stand how this lack of knowledge ca n be 
avoided by saying, as did Laplace, or as would 
Jeffreys, that, when there are two mutually 
exclusive possibilities (e,g. homozygous or 
heterozygous), and with no prior information to 
favour one or the o',hcr, it is a, iomatic that 
their a priori probabilities are equal. and that 
Bayes' theorem should be used on this bas is. 

NATURAL VARIATION AN E ROR 

Th e binomial probability distribu tion may 
be statc~ formally thus : th e probabil ity tha t I' 

"succesSes" will occur in ninLlepenuent tria s 
of an event which may have ei t er of 
two mutually eXc!llsive resu lts (" success " 

""1 ")' h ' l ' n! I' n-r or 'iai ure ' at eac tna is -:-,- (- -\iP q 
1, l1-r ,. 

where p is the probability of a success, and 
q = l-p of a fail ure at a single trial. Th is 
follows from the classical theory of probability. 
The values of the above expression for the dif
ferent possible val ues of r are th terms of th~ 
expansion of th e binomial (p + q)I1, The sum 
of all these terms from 1'=0 to I' = n must 
therefore be 1 (as p + q = I) which is equivalent 
to saying that it is c,;i"tain th:!t in 11 trials r will 
have some value between 0 an d n. For example 
if we toss two coins (/1 = 2) the p:J ssible results 
may be represented HH. HT., TH and TT. If 
the probability of "heads" at a sinde th ro w is 
p =1 and of tails is q = 1 - p = } th en the 
probability of each of the above results is at =;t. H owever there are two possible vnys 
in which one head can occur in two trials (this 
is given by the coet1lcient of th~ expression 

2 ! .. 
above: - - = 2), hence the probabilI ty of two 

, I ! I ! 
heads out of two throws is L of one out of two is 
2 X { = -t, ancl of none is 1· 

It can be seen that l. is distribution deals 
only with discontinuous or discre(~ values. the 
proportions of successes. Thc vall1 c ~ c'l.iculatcci 
from it can be plotted as a block diagram, or 
histogram, with caicula tcd prooabiji lies or 
observed frequencies as ordin a e, and propor-

tion of successes (;) as abscissa. If the total 

area of the blocks is deL ned as 1 then t'. 

probability of a given va lue of (:) is equa1 to 
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the area of the block corresponding to this 
value on t1:" histog l':Jm, 

If l h 2 number of trials, 11, is increased the 
width of each, individual block, corresponding 

to a value of(~) must bxome narrower, until 

eventu a lly it is so mirrow that th e outl i!1 e 
of the histogram forms a smooth bell-shaped 
curve . T his curve is the "normal curve of 
error" . It i repr sented by the form~t1a 

Y = - ~ expo [- (Xi- I..!. =] 
(J "/ 2n L. (j2 

( I ) 

where y is the ordi nate, [I. is th e mea n of the 
distribution (wh ich is the same as its mode, as 
it is sy mmetrical) and (j is i!:. ~ t andard deviation 
(wi1 ich is a measure of the vari:lbi !ity of the 
observations), he SOI!:l.re of t'rl.e standard 
leviation is ca ll d the v~lriJnce, The area uncleI' 

such a curve is uni ty. /\s the ab scissa is now 
a continuous variable x, the b!oc~s of the 
hi s~ogr3m have become ind~finit~ly narrow and 
the element of probabi li:y r~pr~sented by the 
area of such a block. must now be written 
dP = ydx. The probability that x wi!! lie 
between thes~ limi ts on the ClIYcissa, is obtained 
by the integration of the expression dP = ydx 
b;;[ween .rhv appropria te lim its. 

The norm al curve was first used , e.g. by 
Laplace. simply as an approximati on to the 
bi nom ial distribu tion to a vo id the necessity of 
calcu lating its individual terms W'l~n n is large. 
It was app lied by Ga uss to the instrumental 
errors in m:.lking physical observa tions. He 
found th at v":1en a p'1ysical constant was bein3 
m':::lsured the errors oE rep ::ated observations 
w.::re often \vdl represented' by a normal curve, 
the m.~J n of th e distribution being the require~l 
true value of the constant. 

The situation in the biolo ;;ica l sciences is 
rather ddI'er :::nt how~v::r. We are not conc::rned 
sn much with errms of me"surement due to the 
fallib ility of th ~ observer anj his instrum ents , 
but with na tura l v ar ia \ i ~)il which is real and 
inevitable and in 11;) way due to the experi
mr::nlcr's fallibility. ;;nder these co nditions the 
mean value of a distr ibuti on ceases to have any 
signi fi cance and in no sen'; ~ is it a {rue va lu e 
of -the variab le b ~ing meas ured- for in stance 
tIle heights of 111 :::n and Hogben (1957) argues 
th at if we have no {rue value for a variab le the 
concept of error loses its meaning, and in the 



application of the theory of errors to natural 
var iat ion we have mov d beyond its terms of 
re[crcnce. HOIYev~r ' most people \ ho apply 
statistical m th od to natu ral var iation . and 
indeed most 5tati sticians, would feel justified in 
applying procedures de ending on the " norm al 
law" if i ! had been actually obs~rved <I t the 
variable in ques tion was di st ribu ted 'IC ordi ng 
to the mathemati al formula abnve . The fae 
tha t th ::: mean of the distribution of len has no 
re?al signi ficance does not matter. It may simply 
b= used l~ a device for de fi ning the dist rib ution , 
INhich. if normaL can b com pletely defined by 
its mean and stan ' ard devia tion . I t ca n be 
sho wn mathema ically that if errors to wh ich 
the variable is subj ct are of a certain type, the 
variable will be norma lly distribut J. How ver 
th e jus tification fo r the us::, of the norm al law 
is observation tha t it ho lds good . The mathe
matics provide a pJss ible exrJanation for this 
observation. Get dum (1945) q uoks the remar' 
"Everybody fi rmly beli ves in it" (til .:: normal 
law, £1.) " bzcause th n lth;:mn!icians ima 2: in:: 
it is a fAct of obs~rva !io n , and observers that it 
is a theory of math ematic". [n facl observa
li ;)ns as ~ ;Jch are often not normally distnb uted 
and it wi ll be necessary to discov.::r by tri ~l l and 
error some fu nctio n of the 1 which is, if 
statistic -:tl methods depending on normal ity (as 
the majority do) are to b:: val idly used. 
Frequently we find the logarith m of the variable 
is distribu~ed normJlly (Gaddui 1, 1945 ). For 
instance it is well known tha t t!"le individual 
effec ti ve doses of dr ug. are ofte n '··Iognormally" 
d istributed in this way. 0 the lo;:ui thms of 
u '")~ cs must be used fo r calculat ion s. This ha 
been shown to be so for the do se 0 soc!" um 
sa licy la te required to produce toxic sy mptoms 
in man (Hanz!i. , 19 13: Ga dum, 1954). Also 
Woo tton and King (1 951 and 1953) hav shown 
tha t the di stributi ons of the levels or various 
blood consi icuents are someti mes no rl1ul , and 
sometim es logno rm aL In assum ing either with 
out a prior in vestigation we might very wdI 
be mistaken. 

It is fortunate then that most procedures arc 
not very sensitive to small deviations from 
normality; and that ill ans of observations . ev~n 
if the obs~rva ti o ns themselves are [rom a non 
normal population, tend to be normall:; dis tri
buted as the sampl e si 7'': increases. It !:lay be 
noted that a logarithmic tran sfo rmation removes 

the lowt:!l" limit of zero for the dose and so may 
be ex p~cted to remov the positive skewness 
of the or iginal obs rvations. 

Ano ther di ffi cul ty in the application of the 
theory of errors to natura l variation is that a 
biological P' pulation is never static. If an 
exper imcnl. is do ne on a sample of animais or 
men w consi der tha t these have been picked 
at random from a pJpulat ion of oossible 
animals or men. However the assumption that 
the results obta ined can have any application 
in th> futuI"'" 0 tside the realm of this particular 
experiment. involves assuming that in futu re 
experi ments on different , or even on the same 
s:un ple, w' ca n look upon it as ,. sample from 
the samc popula ion as in the firs t cas . This 
i3 difficult to just ify simpiy because a biological 
population is not static and the conditions and 
circumslances of the fi rst ex p rimen t ca n never 
b~ exnc 1y repeated. Conseq uently we mu st 
regard the sample as being from a hy pothetical 
infi ni te popula tion . Thi popula tion is defined 
by certain (hyp::J th tical) parameters or con 
s::wts. fo r i !l Sla n C ~, it mean and standa rd 
dev ia lion if it is nor nally d istributed. Est imates 
of I hese p:lramelers. viz . statistics, are calculated 
fro m the observa tions on the sample. As we 
have sa id that v/e ca nnot ma ke probability 
stCllem nts abo ut v:.!Iues of param eters, holY are 
we In decid e wh ich valu bsst r~ pres8 n ts the 
dJ ta? The method most widely used at presen t 
is the "metho d of : .axiQlul11 likelihood". 

M -THOD OF 'lAXliVIUM LIKELIHOOD 

This was dev loped mai nly by R. A Fisher. 
alth ougJJ. it was known in Je last century. It 
sta tes that the rela tive plausibility of hy potheSeS 
is best mcasur d by their " Ii k lihood" . The 
"l ikelihood" that a parameter ':1S any particular 
val ue is pro po rtional to the probab ility that the 
observed data would have occurred if in fact 
the parameter had thi s value:. We then choos~ 
the particular va lue of the parameter for which 
the likelihood is a max imum. For instance if 
we havv 11. observatiol1s, Xi, which are normall y 
distributed accordi ng to eq uati on ( J) what is 
the best estimate of p., the me:l l1 of the 
distributi on? 

The likelihood of any value of f.l is propor
tional to the probability tha t alJ the observed 
va lues of Xi would have occurred if thi s was 
the true va lue. i.e. it is the producl of all the 



terms resulting from substi tuti on of each of the 
values of Xi in cq uii i on ( 1) i. e. 

11 . 

L'k l'h d IT - 1_ _ I (Xi-fL)Z-j l e l 00 = . . / . e XD. - - . . 
Clv 21r ',- 2cr2 _ 

1= 1 

~ (Xi- fLf 
= eonsta nt x cxp. _ i~ l _ ~ 

11 

2 " (r 

where TI and Z; are the product and su~nma i.)n 
signs respec tively. To fi nd the val ue of 1.1. fo r 
which this is it maximu m we diITeren tiate the 
expressio n (or more conveniently its logari thm 
L ) with respect to [J. and q uate to ze ro (,IS the 
slope of the curve obtain ed by plott ing L 
again st [J. is Zero when L is at a max imum). 
and solve for 11. 

n · )i . . ,.(Xi -P" 
loge (ltkellhood) = L = Cons t ~n t - -' 

-Th ' . I n IS IS ze ro wnen " Xi = n fl , i .c. lL ~ 2-x;/ n ; .... 
i.e . the arithmetic rn an of the observatioil s is 
the l11~ ximul1l lik.eli hood estima t f 1.L 

This method is more com r lica ted wh~n 
applied to problems. e.g., of biolo,, 'cal assays 
with 4u",ntal responses (s e F inney, 195 2). but 
the resul ts of its applicat ion can be us'd quite 
easily. 

The M'efl lOd of L east SCj!wrr!s 
This is a much older nll-C hoel . It stOl t's t ha t 

the best estim ate of a pa rameter is such t at 
.the sum of the sq uares of the de viations of the 
obse rv"tions f rom the es timate is a minimuril , 
In the above exa mple these two methods give 

[
- I,(Xi - P' )~ J 

the sa me result, as expo 2cr'] - reach::s 

a maximum when the sum of S LI are cit: jat ion 
2:(Xi-fJ-J 2 is a minim um . and in fact when the 
method of lee Sl sq uar s i ~ applicab it is 
e4ulvalent to the met hod of max im um li keli
hood if the variation is norm al. 

UNCERTAlNT Y OF ESTI M n:s 
Having made an esti mate of a quantity. C.g . 

the potency ra tio of two drugs , by one of the 
above methods \'01" would then li ke to be able 
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to slate th probabil ity of our being correct. 
Unfortunal Iy such a statement of inverse 
probabili ty i no t usually possible. It is, how 
ever, po sible to calcula Le certain limits for the 
v:due which we ha ve estimated, within which 
we can be fairly cert ain that the 'true' va lue lies. 
Such limils are cailed "Confidence Limits" by 
J. eyman and E. S. Pearson and "Fiducial 
limits" by R. A. Fi sher. These schoo ls di ffer 
in tIl" pr eise interpr.:tation which they put on 
the words " fairly certa in" which ] have used 
ab ve. 

Of the confi cnce limits of yman and 
Pearson, when ca.lculated at the 95 per cent. 
Ie el of signifi cance using the appropri ate 
tables . . we may say that, if we consistently 
assert that th o val ue of the un known p:u-a meters 
lies within the calculated limits, then, in the 
Ion ..: run , we would be conee L 95 times out of 
a 100 (5 e, e.g. Neyman, lJ<i ). A statement 
of th is sor is in fa ct generally accepted in spite 
of the diITic ulty in conceiving wh ~ t we mea n by 
'in th e long run ' \ h~n we ha c to in voke an 
infinite h pothctic11 p pulation fro m which we 
samp' or a singl xperim nt which is not 
repeatab le und r exactly t h~ same condition s. 
Th is statement can ho \-'.'ev r also be interpreted 
as meaning that if we I lake such an asse rti on 
each time w e; do an e: pe. rimvnt throughout our 
lives, then w \ il l be mistake n only about I in 
20 times. Th~ difficulty arises when we try to 
n :Ike a statement about a single experiment. 
1t ~vms an easy step from the above to say 
t:lal, so long as w ... "an fe ~1 justifi ed in assuming 
that we can cons'der t e particular experiment 
il1 question as a randu lIl sample from ail the 
experim ents wh!ch might hy pothetically have 
been done. i.e. tha 'n atu re has done th" sh ufil
ing fo r us'. ihe proba bi lity that we are correct 
in a ss~rti ng thaI L c unknown parameter lies 
within t. ese l)ar! icuL.ir calculated limits is 95% 
or tha t. unless 'a J in 20 chance come off'. we 
shall b2 correct on this p:Irticu lar occasion. 
Such (! statement wou ld, J thi nk. be accep table 
t m ost peopl , though some prefer to restrict 
themsel c, to a statem nl of frequency in 
f;?pe'lt d tria! . 

Fis er how Vd' goes even further than this 
and stales that t. e fi ducial argument. where 
appl icable. justifies th xplicit statement th at 
' the pr babil ily t ha~ thv unknown p:lrameter 
li eS with in the limi ts calculated in any particular 
experi ment is 95 p~r cent. T his sounds super
flcially like a statement of inverse probability. 



Jeffreys (1940) says that it is, and asserts the 
equ ivalence of his appro J h, thro uo-h in ers ~ 
probability, and Fisher's. r isher st;'tes that it 
is not, and that he believes that " the th ory of 
invers;: proba bility is fou nded upon an error" . 
It seems to b~ a common experience, however. 
after studying Fis er's justifica tions of his 
a pproach, to agree with Hogbe n (1957 p. 504) 
th at "again and again we s::em to sid estep the 
notion of inverse probability" . In facl Yates 
(1939) has said of the use of the fiducial argu 
ment "we mus t frank ly recogni ze tha l we have 
here introduced a new concept into our methods 
of inductive inference which cannot be deduced 
by th:: rules of logic from already accep ted 
methods". 

Lt may also be objec ted thal as the parameter 
has a fixed consta nt value then it mus t be 
eith er inside or outside the limits and th rdore 
the only correct sta tement of th is form must 
in volve a probabi lity of 0 or I (as opposed to 
statements of the form; "the probability tha t 
we are correct in asserting that ... , " which 1 
do not think are open to this objection) 

THE INTERPR ETATION OF T ESTS OF 
SIGNIFICANCE 

T h e tests of significance in most common use 
in th e med ical and biological sciences are 
Pearson 's '/... ! test "Student' s" t test and Fisher's 
z test (and the cioseJy related variance r8 lio, or 
F test). Let us consider the t lest. USed for 
example, to test for the signihcance of th e dif
ference be tween two me,ins. or th e diiT-:rt:llce 
between an observed mean and some hypo
thetical v3lue (e.g. zero) . T he value of I is 
calculated, in the former case, as the quotient 
of the difference between the two mea ns and 
th e standard devi ation of this difference and this 
value referred to a tab le of the dioLrib ution of t 
(given e.g. by Fisher and Yates 1957), t::lking 
account of the siz of the sample, and from this 
is discovered a va lue of P. What assumption 
have we made and how are we to interpret the 
result? 

Firstly we have assum ed that our observa
tions, (or some funct ion of t ,em, e.g. their 
logarithms), are normally dis tributed. Further
more we have calculated th e variance (and 
hence the sta ndard devia tion) of the diU'rence 
between the me::lI1s of the two samples by 
add ing their separate vari ances. This involves 
the assumption that they are independent, i.e, 

that the values oC the ariable obtained in one 
slImple ari: Ilo t correl:.t lccl with th ose obtained 
in thz other. We then se t up a null hypothesis , 
tha t is we say 'a. S lin ing lh at both the sam ples 
hac come [ro m the .\'(//1/ (' popul at ion, what is the 
probah ility that. owino to rando m s3ml ling 
error. v.. sIlo del obs::r ' a deviation from this 
hy pot hes is as la rge as, 0 , larger th an that which 
\'iC have observed ? ' T his probabili ty is the P 
value we have cetlculated. If it is ve ry small we 
then conclude th at either 

(a) an improbable event has occurred or 
(b) our samples were not chosen randomly 

or 
«(.) th'll OLlr hypothesis was not t[Llo~ aIld that 

in fact th e samples came from differen t 
populat ions. 

If we decide tha t the la st co nclusion is right our 
just ifica ti on is that if our hypothesis had been 
true then it is improbable that we should 
ob erve such a large devic tion from it. What 
degree of impro babili ty we are prepared to 
accept as e ide nce for a 's ignifica nt d inerellce' 
is entirely a ma tter of personal judgement. 
Commonly a val ue of P = 0.05 is interpreted 
as 'p robably significant', P = 0.01 as 'signili
can t' and P = 0.001 as ' highly si:;;nificant' , but 
this is qui te arbitrary and the results at 
sign ificance tests should always be stated as a 
pro babjjj ty (loosely speak lng, the probability 
that the observed difference was due to chance) 
so that the reader can decid e for himself 
whet her he chooses to regard the differe nce as 
significant or not. This choice will depend , for 
instance, on how important it is that he should 
not be mistaken: on how much he stands to 
lose if he makes a wrong decision, and how 
much will be g8ined if he is right. 

Test ing two somples with d i.fferent variances 

I t is often said that it must be assumed, in 
doing the t t st, that the variances of the two 
samples ar the same and that the hypothesis 
tested is that "the 'true' means of the two 
samples are equal", so that we calculate the 
pro ability that a difference in sample mea ns 
as large as. or larger th8n , tha t observed wo uld 
have arisen if this were right; and in fact if 
the vari ances of the two samples are similar, 
this is virtu al ly so. H wever ~isher (1954) has 
said that the equali ty oE the var iances is tested 
as part of th hy p thesis (in the form in which 
it was first stated above) and [hat in theory at 



least. a devia tion from this hypothes is could 
be due to a difference in the population 
variances, rath r than their means. He recom
mends th at if a tesL [or difference in means IS 

required w should use th~ Behre ns-Fisher Cd') 
test if there is evi dence of lifIerence be tween 
the sample vJ riances, as t li t st takes ace unt 
of the di ff renc.::. However thi test ha s gi en 
rise to con trllV"rsy amo ng stat i ti cians as , when 
we use the 5 per cen t. si,£nifica ncc I el (i. c. 
P = 0.05) and apply the test to re p~1ted 
samples from two fixed po pUla tions. it will nol, 
in the long run , lead to rej el ion of the null 
hypothesis that th~ popul ation n ' ans were 
equal when it is tr ue. ill 5 p.::r cent. of cases. 
F isher says that the fact that w c:1I1 not use a 
frequency in terpre tation of the probab ility in 
no way affects the val idity of the test, but olh r 
sta tisticians (as we ll as exp.::r imenters) feel the 
view adopted in thi s part icula r problem to be 
in consistent with the us ual statistical practice 
followed in other situations (se~ . c.g. Welch. 
1937; Fisher. 19590). 

A tes t has howeVer b n c1 ~vised by Dr. . L 
Welch, on the basis of which W~ call say, at 1 ast 
in the moderate sized samples usually encoun
tered in practice, that the frequt:llcy of rcject ion 
of th" null hypothesis if it is truc wil l be 5 per 
cent. (or any other Selected val ue) in th long run ; 
i.e. we can use the com monly accepted frequency 
interpretat ion of the probabilities calculated in 
testing for significance or est llll atll1g confidence 
limits (Welch, i 947, and 1956). : abIes of the 
v [unction (analogous with the t function , but 
takino- in lo account th diffe rence in sample 
varia~ces) have been computed for the P = 0.10 
and P = 0.02 significanc ' levels (Aspin , 1949. 
reprod uced as Table J 1 of Pearson and Hart ley. 
1954). and for P = 0.05 and P = 0.Ql ( rickett, 
Welch and James, 1956). 

For most other tests of significance we can 
make a fr equency statement of the above sort 
as well; and consequently if. every time we find 
P <; 0.05, we say we have found a significant 
difference then we can expect. in the long run , 
to be mistaken anything up to I in 20 times. 

If. after all this , we conclude that we think 
that our difference is real. and no t due to chance 
(and fu rthermore that is sufficiently lar"e to be 
of practical as well as statistical significance), 
then this conciusion can be properly appl1d 
only to the particular sample teS ted. If we 
wish to induce from this a prediction of what 
will happen in future tests on a different, or 
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even on the same sample (and this would 
presumably be the purpose of the exper iment) 
we must endow nature with a predictability 
which it has often belied. Such a prediction 
could be made with any security only a Eter 
hav ing looked closely to ensure as far as pos
sible that the circumstances are similar in all 
releva nt respec ts on each occasion. 

If. however, our result is non -significa nt. it 
would be quite irrational to assume that because 
we have not rejected our null hypothes is we 
may accept it. For the test discussed above we 
must say that we cannot demonstrate evidence 
for there being a real difference between the 
samples . not that there is no difference. Like
wise when we do a biological assay in volving 
the estimation of dose response curves for a 
standard and unknown drug we test to see 
\·'~·J cth er the lines deviate significantly from 
pali.llldisl11, or from linearity, and whether their 
slope is sign ifican t. If the assay passes these 
tes ts we say that it is 'not demonstrably in valid' , 
but we can never assert that it is valid. 

This is illustrated by eyman's concept of the 
'power' of a significance test. This is defined 
as the probability that we shall reject th~ null 
hypothesis, and can be plotted agaInst different 
values of the ' true ' difference 111 means (see, e.g., 
QuenoLlille, 1958, p. 142). This is illustrated in 
the diag ram. T he abscissce represen t various 
hypoth etical va lues of. the devtatlOLl from the 
null hypotheSIS, e.g. of the difference between 
the " tru e" means of two populatIOns. expressed 
in units of its standard deviation (i.e. the dif
ference di vided by its standard deviation). It 
can be seen that when the null hypothesis (that 
ther;; is really no difference between the means) 
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is true. then we would reject it (wr ngly) in 
only abou t 5 per ccnl. of cases ill thc long [un . 
i. e. th e power of the t ~~ t in this situa tion is 
0.05. If however the null hy pothes i was not 
true, and the samples came from different 
populations whose means difTereu by an amount 
equal, say, to one standard deviatio n (of th0 
difference). then we would exp~c t to reject 
(rightly this time) the null hypothesis that the 
difference was zero. in about 17 p ~ r cent . of 
cases in the long run. i.e. in ~lbo u t 83 pcr cent. 
ot tests we wo uld no t detec t a " true" dilTerence 
of this size. Clearly if we accepted the null 
hypothes is as true each time we got a " non
significant" result we should be mistaken ill 
more than 80 per cent of ou r dccisi ns! The 
power of a test , i.e. its abi lity to detect small 
deviations from the null hypothesis, can be 
increased by increasing the siz of the sample. 
or by adopting a more elaborate sort of exp::ri
mental design by mea ns of which th etTects 
of certa in types of variabili ty can be eli minated 
(see, e.g. Fisher 195 1; F in lley 1955). 

It should be noted that We !l1ake no sta te
ments of in verse probab ili ty abo t hypotheses 
on the basis of significance tes ts . A F isl er 
(l959a) says, if we reject a hypothesis at t e 
I per cent. probabili y level it is nOL because 
the probability of Lh e hypoth si ' is J per cent., 
but because its correctness would ent ai l an vent 
of this low proba bili ty. 

C ORR ·L.ATTOr ' A T REGRESSION 

Fitting Curves to Points 
The fi tt ing ot lines to two re lated variables 

is bes t done sta tis tically. usually by the method 
of least squares. in order 0 obLain the line b"st 
representing the data. Curved or straight lines 
ca n be fitt ecl in this way but straight li nes are 
preferable because tbe arit metic i as ier. an j 

. usually it is possible to tran sEorm one or both 
of our variables so that a stra igh t lin o can be 
fitted over at least part of th ~ e tent of th e 
da ta . For exampk we frequent ly finu t at a 
graded response is lin nrly rela ted to the 
logarithm of the dose of the drug over at leas t 
the central pa rt of the do e-re ponse curv . 
Sometimes we have to use other transforma
tions, e.g. Lauson et al. (1 939) found that the 
square root of the ut ri ne weigh t \ as linearly 
related to the logarithm of the dos of 02stradiol 
in rats. 

We normally fit the simpl st curve compatible 
with the data, because this is th 1110 t easily 

refuted if it is wrong, a well as beca use it is 
n-.os( conVenient. For insta nce if we J1ave th ree 
points we could li nd a quad rat ic equation to 
fi t them exactly (in general if we have n points 
they ca n be fi tted exac tly by a polynomial of 
order n- I); we could equally easily draw a 
sigmoid curve thro ugh them , but nevertheless 
we will a lways fi t a s wight line, if we have no 
a priori 'v idence to th e contrary, unless our test 
of significance t' ll s us that the points dev iate 
mon: fro m the . tr:light line th an could be 
expecteLl by chance. ~ 

It is also necessary to test for significan ce of 
the: slope of the line; it is qLlir '~ possible that 
an appurent s lop~ might have varied from the 
horizo ntal (or fro m another s'lope which we 
may be in terested in) by chance alone. 

We must di tinguish between the independent 
(x) ancl depend ent (,') vari ables when fi tting SLl ch 
a line. The former, e.g. dose of drug, is assumed 
to be l1leasured \'vith negligible error while the 
latter, c.g. response is va riable. Usually there 
are severa l 111 ' asure ments of the laner for each 
va lue of the former, and we must assume that 
variance of til d pend nt variable, e.g. re ponse, 
does no t d pend on th indep ndent va riable. 
e.g. dose i.e. that it is si milar in each dose 
gro up. This can be t st d by Bartlett's tt:sL 
(Bart lett, ( 937 ). It may b necessary to use a 
transformat ion to ensure th at this is so; e.g. 
Perry (1950) fo und it nee ssar to plo t log dose 
against log resfJollsl.' in ord r to obtain a straight 
dos r s j)onse line complying with this cond i
tion of · homogene ity of variances when using 
urvival tim as a response for toxicity tcs ts, 

aJiU Fi nney (1 952) illustrates the use of the 
angl tra nsformat ion ( ? = 5i -' pl:, where p is 
the l'CSp nsc xpressed s a proportion) for 
a similar purpose. 

Having full'illed these con ditions we now fit a 
line. There arc in fact two lin es that we I,,; an fit 
depending on whe ther we min imize th e sum of 
sqllare of the de ia tions n(' the values of ~, ~r 
of v (rom the lilE . These line cross at (y, x) 
bu t may have difJ'erent slopes. We must always 
fi t the line s. that the sum of squ ares of th e 
deviations of the de pendent variable from the 
fitted line is at a minimum (sec, c.g. E i. enhart, 
1939). T his is ailed th r gression line of y 
on x. Sometimes however we cannot distinguish 
a dependc nt and un indep ndent variable, for 
instance if we plot w ight against height. In 
thi ~ cas we take th~ geometr ic mean of the 
slope ' of the two possible regression lines, 



(vb1b2)· The slujJ '; of this li ne is called the 
correlation ca:/!icient(r) of the two va riables. 
If y increases a" x increases,. is positive; if y 

. decreases, r is neg<Jti ve. 

If two variables A and B are foun d to be 
correlated to a greater dcgre~ than would be 
expected by chance we may Icntati vely co ncl ude 
th at either 

(i) A causes B 
or (ii) B causes A 

or (i ii) SOITle 0 her comm on factor causes 
both A and B 

or (iv) the apparent correlat ion is a coin
cidence. Presumably this accounts 
for the large and positive eorr lation 
between the an nual divorce ra te and 
the import of apples ! (Fisher, 195%). 

For instance. there is no do ubt that there is 
a corrclation between smokin g and the incidence 
of lung cancer and it would be very in erest ing 
to know whether this meant that smoking could 
cause lung cancer. But we don't. Certa inly 
if a pa tient asks his doctor whether he should 
smoke or not it wou ld be quite re asonabk tha t 
the doctor should recom mend that he should 
not smoke as smoking mir;hl illcreas ' his ri sk of 
contracting the di sease, but does th e evidence 
justify the conclusion (B.M .J . 1957) thut the 
"dangers of cigarette smoking , . .. must be 
brought home to the public by all the mode rn 
devices of publicity" ? Fisher (195%) thin ks 
that it does not and presents several good 
reasons for this. As he says, the il creas.:d 
incidence of the disease which seems to have 
taken place ov r the last 50 years (even aliowing 
as far as possible for improved diagnosjs, re.) 
is frightening; but it s ollId n't be lIsed to 
frighten people. 

The situation would be very di tl ren t if we 
could take two large groups of leenagers at 
random and instrucl one of th em to smoke and 
the other not to smoke. [t is tr ue th;} t the 
incidence of lu ng cancer is greater among 
heavy than il lTI Ong light smoker and ' lhil t 
people who give up smoking tend ( 0 hav the 
lower incidence of no n-smoker , but th se facts 
certainly do not exclude the oth er poss ibilit ies 
whic h we must considcr - viz. thal cancer. or 
a pre-cancerous sta te cncouragcs srnok ing, or 
that it is some other factor, e.g. the individ ual 
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ge notype, which in fluences both. Somc of the 
factors wh ich must be explained are that: 

(a) Allhough smo k ing has increased much 
Illore il1 women than in men in the las t 
50 years, lung ca. ncer has increased more 
rapidly in men than in women. T here 
seems lit tle reason, the refore, to associa te 
the secular increase in lung cancer with 
the increase in smok ing. 

(b) Smokers who inhale have a " ignifi 
can tly" (P ~ 0.0 I) lower incidence of 
lung cancer than those in the same 
tobacco consumr1ion bracket who don't 
inhale. by il bout to per cent. (or about 
13 p ~r cent. j f pipe smokers are excl uded ). 

(c) There is evidenc (Fisher. .l959b) tha t 
monozygotic twi ns are much more alike 
in thei r smoking habi t thill1 dizygo tic 
twins and fLlrthermorc the proport ion of 
' alike' and ' un Ji ' among monozygotic 
twins is illuch the same whether they 
have been brought lip separately or 
together. '0 the err ct cannot be ascribed 
to-the greate r mutual infl uence of mono
zy",olic twin s. This indicates that the 
.s"n type may influence smoking habi ts. 

These in teresti ng fact s serve well to underlin e 
the al ready wdl known , but nevertheless con
siderab le. cl:tnger of confu sing correla tion with 
cause . 

DESIGNING 0 ' EXPER 1ME , TS 

Th is is a largt; subjec t and increasingly 
recognised to be of greil l importance if va lid 
concl us ion s are to be draw n from experiments. 
I have only enough spilce here (0 mention a 
fe w poin ts of interest. T I e most importa nt 
conc ep ts a re co ntr ol. repl icat ion and 
randomi sa tion. 

Control 
The ne d for con troi groups is now widely 

recognised. The nu mber and var iety of 
responses to pharnwcologica lJy inert dummy 
tablets is amazing even when the patient and 
doctor arc uJlaware of the ll aLure of the medica
ment. For instance Beechcr (1955) records all 
average respon se rale to dummy treatment in 
over LOOO patients in 15 difTcrent drug trials, 
mostly by th e ., doub le blind " method. of 
c. 35 per cent. T hi s was a fa irly constant tigure 
suggesti ng a co mmon bas ic mechanism . 
Lasagna 1'1 a/. (1 958) show thai the curve [ela r·· 
ing analgcs i J"flcaey in post-partum pain to 
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time after medication is very similar in fo rm 
for both aspi rin and dummy tablets. Both have 
a time of max imal effect aft er which the !fect 
declines. 

I t might seem that du mmies would make 
good therapeutic agents (as in fact they some
tImes may); bu t they can also produce toxic 
effects, occasionally quite severe. e.g. over
whelming weakness. dermatiti s medicamentosa. 
urticari a, angioneurotic ccdema and diarrhcca 
(Wolf and Pinsky, 1954) im ilad y Kerr an d 
Dav idson (1958) found that the incidence ot 
gastro-intestinal side-effects was much the sa mc 
in subjects taking ora l iron preparatio ns as in 
those taking dummy tablets which they thought 
to be another form of iro n. whereas when 
tak ing tablets which were IabelIeJ "Control 
Pills", hardly any complained of side eJtcc ts. 
Gi rdwood (1 952) showed th at white co mpound 
ferrous sulphate tab lets produ ced few sick 
effec ts in patients who " were qu ite certain that 
they co uld not tolerate Fersolate" (green 
tablets). 

Ob vio usly then any gro up receiv ing a new 
treat ment must be compa red with a co ntrol 
group of subjec ts receivin g a dummy treatm ~n l , 
or altern a tively the existing standard treatment 
for the condition (except perha ps in so me 
diseases, sLlch as acute leu ka:m ia vvhen ex p~ri
ence may be suffic ient con tro l). 

It is also necessary tha t neither the docto r 
assess ing th e effects nor the patient s'lould be 
aware of the trcatm en t given (double bli nd 
method) as is illustra ted by Wolf (1 95 9) who 
quo tes a case of a patien t receiving d ummy 
tabl ets for astll ma . When the doctor was und er 
the impression that the t<l ble ts were not du m
mies he recorded an improveme nt. when h ~ 
knew th ey were dummies the condition go t 
worse. 

RUl1domisation ul1d R eplication 

The necessity for replicati on is co mlllon 
sense, but the importance of proper ra ndomisa
tion is perhaps less appreciated. It is necessary 
to preve lll bias of t he results by sources of 
va riability which ca nno t be controlled. For 
instance in the cxample <l bovc we W.3re in
terested in the effect of smoking 011 lung c::t necr. 
not in the possi ble effects of pre-cancerous states 
or genotype. If then we could pick out two 
groups of people at ra ndom we might assume 
that the proportion posscssing a given g nolype 
or harbouring <l pre-cancero us condition was 

almost the same in each gro up, i.e. the only 
diffe rence between the groups was th at one 
smoked and the 0 her did not. Only in this 
way could a causal rda tion be established in the 
face of the apparent contrad ictions mentioned, 

A reasonable method of forming two groups, 
for instance to bc treated by different methods, 
i , to allocate su bjects alte rna tely to the two 
groups. How \' r this may 1 ad to bias if, for 
in'stance, it means that the person who decides 
wheth r a particular subject is to be included 
in t he trial or no t knows which treatment the 
subj ect wi ll hn (; before decid ing (Doll , J959). 
T be bes t method o[ randomisation is to li se <l 
tab le of random numbers (Fisher and Yates, 
1957) or the toss of an unbiased co in . 

For the most preci s_ results each subj ect 
sh uld act as his own control. For insl<ln ce in 
kin disorucrs it may be possible to try different 

tr ' atments irilultancously on th l; same subject. 
Wit h conditions that recur in a re producible 
way, e.g. migra in e or epi lepsy, treatmc nts ca n be 
given to the sam", pa tient at d iff rent times. The 
order in which each p:1tient receives e8.ch treat
ment mllst then be randomised, to p even t a ny 
possible efl'ect Ot the order of treatment fr om 
biassing the results. The III thad of stati tical 
analysis depends on how this ra ndomisation has 
been do ne, if each pat ient receives each treat
ment the same nu mber of times it is possible to 
climi nat::: tl e var i:.t bility due to differences 
b~ tw ee n patien ts (e.g. by subtrac ti ng this com
ponent from the tolal var iabili ty in an an alysi s 
of vari ance) ; and if the randomisation is of tbe 
righ t typ.:: we can <l lso el imina te variability due 
to cl iflerences ill the response depending on 
order of lrealmd lt. 

Often how 'vel' It wi l b·> necessary to give the 
Hctivc and cont rol trealm ' uts to d iffere nt 
pali nl . It may t len b::: useful to arrange 
patients in r a irs as si mil ar as possi ble before 
the test and us ;:: tbe diJTe re nces between 
f ,::s jJonscs of the rair as ~l measure of the 
cfTt:cl of the treatmcnt. T his is eq ui valent to 
cl illl in<l tilig th e variabiJ ilY in r;:sl OIl SC di fference 
b~twc:: 11 jJ Ji rs . Pat ients CJ. n in fact be gro uped, 
hd ol'/:, the exp.:rimcnl. according to any 
crit.:rion . e.g. prognosis (e.g. goo d. fair or poor) 
and if there a1'':: sign ifica nt dilTercnces between 
lhe groups t h ~ variabili ty due to these can be 
lim inated by appropri ate analysis of the results 

so i llcr..:asing the precision of the co mparison 
hdwcen the treat men ts. 



ONe U SI 

The use of statistical method and logical 
experimental design is a valuable tool by means 
of which the experimenter can make the most 
of his observations and avoid making un
justifiable claims on the basis of them, as long 
as the results of the calculations are inteJ;preted 
wi th all due respect for their logica l basis. 

1 , hould like to th a nk D r J G. D a re , Mr. J. R . 
Luca~ (Department of Philosophy), Dr. G. A. ogey, 
M r. W . H . Trickett aGd Dr. B . L . Welch ( D epartment 
of M at hematics) for their invaluable advice and help, 
dnd crJt i c i ~m o f the manu script. 
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