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Spectra of some self-exciting and mutually exciting
point processes
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SUMMAKY

In recent years methods of data analysis for point processes have received some attention,
for example, by Cox & Lewis (1966) and Lewis (1964). In particular Bartlett (1963a, b)
has introduced methods of analysis based on the point spectrum. Theoretical models are
relatively sparse. In this paper the theoretical properties of a class of processes with particu-
lar reference to the point spectrum or corresponding covariance density functions are
discussed. A particular result is a self-exciting process with the same second-order properties
as a certain doubly stochastic process. These are not distinguishable by methods of data
analysis based on these properties.

1. INTRODUCTION

Bartlett (1963a, b) considers a stationary point process N(t), representing the cumulative
number of events up to time t, for which

A = E{dN(t)}ldt

is constant and the covariance density

/I(T) = E{dN(t + T) dN(t)}j{dtf -A2 (1)

does not depend on t. For r < 0, /I{-T) = /I(T), but, for T = 0, E[{dN(t)}2] = E{dN{t)} if
events cannot occur multiply, so that the complete covariance density becomes

I^\T) = \8{T)+[I{T), (2)

where S(T) is the Dirac delta function and /A(T) is continuous at the origin. The complete
spectral density function for N(t) is defined by

h { J L ) dr) •= h J l , e~^<c)(T)dT = h { A + J L e " > ( T ) dr)
In particular for the Poisson process /I(T) = 0 and/(w) = A/(27r).

This may easily be extended to the simultaneous study of a number of point processes
Nr(t) (r = 1,..., k) with covariance densities

firs(r) = E{dNr(t + r) dNs(t)}l(dt)2 -KK (4)

where A, = E{dNr{t)}{dt. Now /in( — T) = /isr(r) and delta functions occur at the origin
when r = s. Then the complete covariance density matrix is

, (5)
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and the spectral density matrix

F(co) = ± jdiag (A) + J " ^ ™ ^ ) drj (6)
is Hermitian.

2. A SELF-EXCITING POINT PROCESS

We consider a point process N(t) such that

•px{AN(t) = l\N(s)(s < t)} = A(<) At + o(At),

Vv{AN(t) > l\N(s)(s < t)} = o(At).

In the doubly stochastic process (Bartlett, 19636), A(t) is assumed to be a stationary ran-
dom process and the conditioning event is written as {N(s) (s ^t): A(s) (— oo < s < oo)}, so
that we could think of A(t) being determined for all t before the N(t) process is considered.
Here in contrast we shall assume that the process is self-exciting in the sense that A(t) may
be written

= v+l g{t-u)dN(u),
J - 0 0

(8)

which together with (7) defines the process. In effect one may think of this as a self-exciting
shot process in which the current intensity of events is determined by events in the past.
This will be a largely local effect if g(v) decays rapidly but may contain longer term effects
if g(v) has a hump, remote from the origin. In principle A(t) should always remain positive
but models for which the probability of negative values is small may be useful approxima-
tions. We, therefore, assume g(v) ^ 0 and g{v) = 0 (v < 0).

If we assume stationarity, then from (8) we have

A = E{A(t)} = v + A I g(t-u)du, (9)
J -oo

or

A =

Thus we must have v > 0 and
/•oo

< 1.
/•oo

g{v)dv
Jo

To obtain an equation for the covariance density we observe that, for T > 0,

= E [ ^ {„+J%(t + T-«)dff(«)}] - A«

= g(T — v)/i'fi\v)dv.
J —oo

Applying (2), we find, for r > 0,

li(j) = A<7(T)+ g{T-v)(i{v)dv. (10)
J - 0 0
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This integral equation in general is difficult to solve analytically. Since /I(T) is symmetric
the equation may be written as

1*00 CT

/I(T) = Agr(r)+ g(r + v)fi{v)dv+ g{r-v)(i{v)dv (T > 0). (11)
Jo Jo

Standard techniques exist for the numerical solution of integral equations (Mayers, 1962).
In (11) the single integral of (10) has been decomposed into two separate integrals. This is
convenient as different correction terms are appropriate for the numerical integration of
these two types. A finite difference method which decomposes the interval (0, oo) into dis-
joint intervals with more pivot points near the origin would be appropriate.

An analytic solution may be obtained when g(v) decays exponentially.

3. THE CASE OF EXPONENTIAL DECAY

If we consider the special case

9(V) = S o,e-4" (v > 0), (12)

with

then, taking the Laplace transform of (11), we find

j l P

and so

*(«) = —/»*(«) =
1 - S

If we put s = /?r (r = 1,..., k) in this equation, we obtain k linear equations in the k un-
knowns fi*(ftr) which can easily be solved. Equation (13) will then give a well determined
function.

The spectrum of this process is then easily obtained since, from (3), we see

^ -»o>)}. (14)

If we multiply the numerator and denominator in (13) by II (^ + s) we see that

/**(«) = Pi(s)IPi(s),

where px(s) and pz(s) are polynomials of degree {k- 1) and k, respectively. The general form
of /I(T) on inversion will thus be

Mr) = S 7ye-*iT (T > 0),

where — Tfj are the roots of p2(s).
In the case k = 1 when #(t>) = ae"> (v > 0), we find that ji*(ft) = |aA/(y?-a). Therefore,

(15)
a) '
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Then

^ ) ) T ( r > 0 ) , (16)

where, from (9), A = v/?/(y?-a).
Now it is known (Bartlett, 19636) that for a doubly stochastic process the covariance

density fi{r) is identical with the covariance function of A(t). Thus the second-order proper-
ties of this self-exciting process as exhibited in (16) and (17) could equally well be obtained
from a doubly stochastic process where A(t) has covariance function (16). Such a process can
be generated in the form

= 7+1
J -a

A(t) = y+\ e-V-a)»-">dz(«), (18)
J

where z(u) is a process of orthogonal increments with

E{dz(u)} = m du,

va,x{dz(u)} = a

where y and m are any constants satisfying A = y + ra/(/?—a). It is to be expected that the
result (13) could also be obtained from a doubly stochastic process where A(t) has the form

A(t)
fc n

= y+ £ e-
3 = lJ-co

for a suitable choice of parameters, where z,(w) are mutually orthogonal processes of ortho-
gonal increments.

Thus it is clear that given a set of data from a point process we cannot expect to dis-
criminate between a self-exciting and a doubly stochastic process on the basis of the esti-
mated point spectrum, covariance density or other equivalent functions such as the vari-
ance-time function (Cox & Lewis, 1966, p. 72). Bartlett (1964) found a clustering process
with the same second-order properties as a two-dimensional doubly stochastic process;
indeed it was completely statistically identical. Vere-Jones (1970) gives a similar one-dimen-
sional example.

4. SOME MUTUALLY EXCITING PBOCESSES

Consider k point processes Nr(t) (r = 1,..., k) forming a vector process N(<) such that

r(0 = l\N(s)(s < t)} =

0} = (M)

independently for each r, where

^ ( O - ^ + S P 9rs(t-u)dNs(u)
s=l J-oo

or

A(<) = v + f G(t-u) dN(u). (20)
J —00
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The vector of stationary densities is thus

A=(I - r ) - 1 v , (21)
where

T= f"G(t;)cto,
Jo

provided A > 0. For T > 0

(i(r) = E{dN(t + T) dN'(t)}l(dt2) - AA'

= E [(v + f+T G(< + T - «) dN(u)\ ^ 7 ^ 1 - A A'H J -o> ) at ]

= \ G(j-v)\&\v)dv.
J - C O

Thus, by (5), we have, for T > 0,

JX(T) = G(T) diag (A) + [ G(T - v) \x{v) dv. (22)
J —CO

In principle this equation may be solved numerically in the same way as the one-dimen-
sional case, but of course the labour involved increases rapidly and accuracy suffers, except
for special cases; see §5.

In the exponential case
n

G(v) = 2 a(m)e-^m)",

we may take the element by element Laplace transform of (22), and using ji( — T) = [L'(T),

we find

p.*(5) = {I - G*{s)}~1
 \G*{S) diag (A) + S <x<"V{/?<"»}/{/?<m> + s}] . (23)
L m=l J

By inserting s = /?(m) (m = 1, ...,n) in (23), we obtain a set of linear equations for the
unknown constants /^-{/?(m)}, the solution of which may be substituted into (23) to give the
complete solution for (i*(s). The spectral matrix is then given by

F(w) = — {diag (A) + n*(i«) + {x.*( - i(o)}. (24)

From (23) we may infer the general form

(r > 0),

where the elements of Tr(r) are polynomials in r, usually constant.
Some results may be obtained explicitly in simple cases. For example, in the bivariate

case, k = 2, with simple exponential decays we will assume that for i = 1,2 and,?' = 1,2

9ijiv) = a i 3e-^* (v > 0).
Hence

Then (23) yields
flf£(«)], (25)
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where

£ ( fin) + &{*) /«

0&(«) {?&(«) Ax + ?

n{s) /4i(An{s) /4i(An) + fl&(«) / 4 ( A12)}

+ <&(«) &&(«) Aa + flr£(«)/«£(/?21) +^S(«)/«S(/?2s)}. (26)

The values of h22(s) and ^2i(
5) a r e obtained from these by interchanging suffices.

Case 1: Non-interacting. If a12 = a21 = 0, the cross-covariances are zero and each process is
self-exciting. Then

as in (15).
Case 2: One-way interaction. If a21 = 0, the behaviour of Nt(t) does not affect the future of

the N2(t) process which will be a simple self-exciting process, and

The result is particularly simple if a22 = 0 also, so that N2(t) is just a Poisson process. Then
substituting in (25) and (26) we find

/4L(S) = /*£(«) = 0.

— * ' " ' (27)

Solving for /tu(yffu), we find

Then inversion of (27) yields, for T > 0,

= i«22 = 0,

which has the expected general form.
We observe that
(i) if a12 = 0, (28) reduces to (16);
(ii) if a n = 0, then N^t) is 'simply excited' by the N2(t) processes. Then equation (28)

gives
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This agrees with the result for the doubly stochastic process which in fact it is; see (16).
As mentioned in § 3, filx(j) is also consistent with a self-excited process. In this case the self-
excited and simply-excited processes may be discriminated by looking at the cross-covari-
ance /I12(T).

5. PROCESS WITH KNOWN EXCITER

If the interaction between two processes is one-way in the sense that

pr[A 1(^(5),N2(s)}(-oo < s ^ t)] = pr{.4|IV2(s)(-oo < s < t)}

for any set A in the Borel field of the process {iV2(s), t ^ s}, i.e. the future behaviour of N2(s)
is independent of the past of Nt{s) when the past of N2(s) is known, then it is possible to
allow N2(t) to behave in a more general manner.

Suppose .AT̂ ) is a point process with known spectrum/22(a>) and that

pr{AiV1(«) = 11-^(5) (-00 < s < t), N2(s)(-co<s <co)} = A1(t)M + o(M), (29)

where

Ai(O = v1 + gn(t ~ u) dN-iiu) + g12(t - u) dN2(u).
J —00 J —00

Notice that the essential difference between this and the previous theory lies in the con-
ditioning event (29).

As before we have, for r > 0,

+\ gii(r-v)/i11(v)dv+\ g12(r-v)/i21(v)dv. (30)

However, by virtue of the conditioning event in (29), the similar equation

= gu(T-u)fi12(u)du+\ g12(T-u)/i2
c
2\u)du (31)

holds for all values of r.
Hence on taking transforms we find the cross-spectrum

The value of /I12(T) may be obtained by inversion, probably numerically, and we note
/*2i(T) = /*i2( — T) a n ( l /21M = fiz( — w)- The third term in (30) is thus a known function of T
and (30) becomes an integral equation which may be solved by the same methods as (10).

The case gn(u) = 0 is a doubly stochastic process. Therefore (30) holds for all r and one
may take the transform to obtain

which is the usual result for the doubly stochastic process.
The above results can be applied to the fe-variate process of §4 when the transition matrix

G(u) can be partitioned as

[ 0 G22(u)\'
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where the vector process N2(<) does not depend on the past of the vector process N^i), given
the past of N2(£). Equations (30) and (31) are to be interpreted as matrix equations and (32)
becomes

F12(a>) = {I-G&iwfl-iG&twJF^w).

This is particularly useful when G(u) is triangular, so Nt(t) only depends on N}(t) (j = i,
i + l,...,k). In this case the solution for i f̂t_1(i) can be found from the properties of Nk(t).
The solution for Nk_2{t) from the properties of N^^t) and Nk(t) and so on recursively solving
each one by applying the methods of this section.

6. APPLICATIONS

The object of this study is to produce a class of theoretical models which may be applic-
able to a variety of problems. We have concentrated on the second-order properties since
these are most amenable to data analysis for testing goodness of fit. Some possible applica-
tions are suggested.

The self-exciting process is a possible epidemic model in large populations in so far as the
occurrence of a number of cases increases the probability of further cases. The mutually
exciting processes could provide models for epidemics in which different types of cases are
considered (children, adults, animals) and for associated diseases such as shingles and
chicken pox. Other applications might be in complex equipment: for example, the computer
(Lewis, 1964) and the human body, as a model of neuron firing (Coleman & Gastwirth,
1969). Another application might be to the emission of particles from a radiating body
which is excited by impact of other particles.
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