
Practice of Epidemiology

Effect of Formal Statistical Significance on the Credibility of Observational
Associations

John P. A. Ioannidis1,2,3

1 Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine,
Ioannina, Greece.
2 Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece.
3 Department of Medicine, Tufts University School of Medicine, Boston, MA.

Received for publication May 22, 2007; accepted for publication January 4, 2008.

The author evaluated the implications of nominal statistical significance for changing the credibility of null versus
alternative hypotheses across a large number of observational associations for which formal statistical significance
(p < 0.05) was claimed. Calculation of the Bayes factor (B) under different assumptions was performed on 272
observational associations published in 2004–2005 and a data set of 50 meta-analyses on gene-disease associa-
tions (752 studies) for which statistically significant associations had been claimed (p < 0.05). Depending on the
formulation of the prior, statistically significant results offered less than strong support to the credibility (B > 0.10) for
54–77% of the 272 epidemiologic associations for diverse risk factors and 44–70% of the 50 associations from
genetic meta-analyses. Sometimes nominally statistically significant results even decreased the credibility of the
probed association in comparison with what was thought before the study was conducted. Five of six meta-analyses
with less than substantial support (B> 0.032) lost their nominal statistical significance in a subsequent (more recent)
meta-analysis, while this did not occur in any of seven meta-analyses with decisive support (B< 0.01). In these large
data sets of observational associations, formal statistical significance alone failed to increase much the credibility of
many postulated associations. Bayes factors may be used routinely to interpret ‘‘significant’’ associations.

Bayes theorem; empirical research; epidemiologic methods; meta-analysis; observation; statistics

Abbreviation: RR, relative risk.

Editor’s note: An invited commentary on this article
appears on page 384, and the author’s response appears on
page 389.

Several sets of high-profile research findings from obser-
vational studies have been contradicted in the last few years
by randomized trials (1, 2). Many associations identified in
observational epidemiologic investigations may reflect
false-positive findings (3). This applies to both traditional
and molecular epidemiology (3–5). Multiplicity of compar-

isons, massive testing of hypotheses that have a low likeli-
hood of being true, and various biases are invoked to explain
false-positive findings.

In most observational studies, investigators use frequent-
ist approaches to reject null hypotheses of no association.
This may sometimes lead to misleading inferences. Several
Bayesian methods have been proposed to measure the cred-
ibility of alternative versus null hypotheses (6–9). These
methods have a well-established theoretical background.
However, they have been applied in relatively few studies
with real data (10–12).
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With hypothesis-testing and nominal statistical signifi-
cance having been entrenched in the interpretation of asso-
ciations for decades, the paradigm may not change unless
the shortcomings are shown with large-scale evidence. It is
useful to examine a Bayesian interpretation of the results of
a large sample of observational studies. One may ask: How
much does a nominally statistically significant result in-
crease the credibility of a postulated association? Here, this
question was addressed in analyses of two large data sets of
observational associations.

MATERIALS AND METHODS

Theoretical framework

The poststudy odds that a probed association is true can be
estimated as the ratio of the prestudy odds over the Bayes
factor B conferred by the study data. Prestudy odds depend
on the specific research field and potentially other external
evidence; therefore, deciding on a specific value carries some
unavoidable subjectivity. All analyses presented here focus
exclusively on B. B < 1 means that the study increases the
odds that some probed association exists compared with what
we thought before the study. B > 1 means that the study
decreases the odds that some association exists compared with
what we thought before the study. B ¼ 1 means that the study
does not change the odds that the probed association exists.

To allow closed form analysis in performing calculations,
let us consider that in each study, the observed effect size
(here, the relative risk) can be represented by a normal likeli-
hood. This assumption is typically reasonable for studies that
are not small, as in the studies included in the empirical eval-
uations presented here. The observed effect size is considered
to be an estimate of the true effect h with a certain variance

ym~N½h;varðhÞ�
or, equivalently,

ym~N½h;r2
=m�; ð1Þ

with m being the effective number of events in the study.
The prior can be specified for convenience as a ‘‘spike

and smear,’’ where a spike of p(0) is placed at the null H0

and the remaining 1 � p(0) is distributed under the alterna-
tive H1 as

hjH1~N½0;r2
=n0�: ð2Þ

From equations 1 and 2, it follows that

ymjH1~N½0;r2ðð1=mÞþð1=n0ÞÞ�: ð3Þ
B is the ratio of pðymjH0Þ=pðymjH1Þ. Based on the above
considerations of normality, computationally the Bayes fac-
tor is given by equation 4:
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where zm ¼ ym
ffiffiffiffi
m

p
=r is the standardized test statistic for the

null hypothesis. Let us set, following the method of
Cornfield (9),

n0¼ 2r2
=ðph2AÞ¼ 2m varðhÞ=ðph2AÞ; ð5Þ

where hA is the expected value of the effect under the alter-
native hypothesis, if there is an effect in the positive direc-
tion (relative risk (RR) > 1.00). An advantage of this
approach is that it allows for the ratio of m=n0 to be ex-
pressed as a simple function of the observed varðhÞ and a
specified alternative effect hA. Specifically, from equation 5,
it follows that

m=n0¼ ph2A=2 varðhÞ: ð6Þ
Sensitivity analyses can be used to examine whether con-
clusions are affected appreciably, depending on what effect
is assumed under the alternative, that is, under different
priors.

A Bayesian framework can also help an investigator ex-
amine the level of support for the null hypothesis versus all
competing alternative hypotheses (e.g., as described by
Goodman (8)). This has the disadvantage that large studies
with minimal effects may seem to have strong support for
the ‘‘generic’’ alternative hypothesis, although the effect is
practically ‘‘null’’ (e.g., an odds ratio of 1.04 with very tight
confidence intervals) (6). Therefore, the analyses presented
here address each time a specific prior for the alternative:
The overall expected value of the effect under the alternative
is 0 (i.e., the same chance that an effect is in one direction or
the other), while the expected value of the effect under the
alternative in the positive direction is hA.

Databases of observational associations

The first database contained 389 studies published in
2004–2005 that presented relative risk estimates for diverse
continuous risk factors in epidemiologic studies. The search
strategy and eligibility criteria have been described in detail
previously (13). In brief, the studies pertained to continuous
risk factors that had been examined in contrasts using me-
dians, tertiles, quartiles, or quintiles. In each study, the first
reported eligible relative risk had been recorded. For the
current analysis, the data set was further restricted to studies
in which the relative risk was nominally statistically signif-
icant at the p ¼ 0.05 threshold without any adjustments for
multiple comparisons and the 95 percent confidence interval
was also available, so as to calculate the variance of the
natural logarithm of the relative risk under normality as-
sumptions. Overall, 272 studies fulfilled these additional
criteria.

The second database contained 50 meta-analyses of gene-
disease associations (obtained from a total of 752 combined
studies) published through February 2004 for which inves-
tigators had claimed a nominally statistically significant as-
sociation (p < 0.05) between a common genetic variant and
a disease phenotype by random-effects calculations that ac-
count for between-study heterogeneity (14). Search strategy,
eligibility criteria, and selection algorithms for the genetic
contrasts are described in detail elsewhere (15–17).
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Meta-analyses may be considered as single studies for esti-
mation of their B.

Estimation of Bayes factors

For each association, estimation of B used the observed
effect size and the variance thereof and different assump-
tions for the prior. B does not depend on p(0), but it depends
on the exact shape of the prior for the alternative hypothesis.
Different values for hA were used in the analyses. These
values reflect the expected magnitude of epidemiologic
risks. Most relative risks in the current era are anticipated
to be relatively small (18). In population genetics, in partic-
ular, small and very small effect sizes (RR ¼ 1.1–1.6) are
considered typical (17, 19). Most of the epidemiologic in-
vestigations analyzed did not include any sample size or
power calculations. Therefore, it is unknown what the in-
vestigators themselves would specify up front as the alter-
native hypothesis for effect size. A wide range was
considered, including hA of 0.1, 0.25, 0.5, 1.0, 1.5, and
2.0, which correspond respectively to relative risks of
1.11, 1.28, 1.65, 2.72, 4.48, and 7.39. Typical effect sizes
may vary in different fields of observational research. There-
fore, an additional analysis considered the median relative
risk across all studies in the database that addressed the
same type of risk factor after coining of all relative risks
so that they were greater than or equal to 1.00 (i.e., relative
risks less than 1.00 were inversed) for consistency. Catego-
rization of risk factor types was performed as previously
described (13).

The presented categories of B follow the traditional
Jeffreys calibration (20): B ¼ 0.32–1.00, ‘‘not worth more
than a bare mention’’; B¼ 0.10–0.32, ‘‘substantial support’’
for the alternative hypothesis; B¼ 0.032–0.10, ‘‘strong sup-
port’’ for the alternative hypothesis; B ¼ 0.010–0.032,
‘‘very strong support’’ for the alternative hypothesis; and
B < 0.010, ‘‘decisive support’’ for the alternative hypothesis.

When B exceeds 1.00, the credibility of the probed asso-
ciation is worse after the study as compared with what it had
been prior to the study. At first reading, it sounds paradoxical
that a formally statistically significant result may sometimes
decrease the credibility of a probed association. However,
this makes perfect sense as a consequence of the Lindley
paradox (21). When the observed formally statistically sig-
nificant effect is small in magnitude (close to the null), the
alternative hypothesis may be less likely than the null.

Evolution of evidence on associations

Evidence is not static but evolves over time (22, 23). An
association may be revisited by the same investigator or
other investigators. More recent studies may be included
in a cumulative update, and eligibility criteria or genetic
models may also be revisited. One may then ask whether
associations without substantial support are more likely to
lose nominal statistical significance in subsequently pub-
lished meta-analyses compared with meta-analyses that
had decisive support.

This evaluation focused on genetic meta-analyses in
which the Bayes factor (for hA equal to the median relative

risk in the field of genetic association meta-analyses) sug-
gested either no substantial support or decisive support for
the association. PubMed searches (March 2004–February
2007) were made to identify any subsequent meta-analyses
on the same association that had been published at least one
calendar year after the first. Ideally the same genetic contrast
and eligibility criteria were preferred, if available; differ-
ences were allowed otherwise. When several more recent
meta-analyses were identified, the most recent one was se-
lected. For each selected more recent meta-analysis, the
odds ratio and 95 percent confidence interval were extracted
for the same genetic contrast as was made in the earlier
meta-analysis. If information on the same exact genetic
contrast was not provided, the odds ratio and 95 percent
confidence interval were selected for the primary contrast
reported in the more recent meta-analysis.

RESULTS

Characteristics of evaluated associations

The first data set included diverse types of risk factors:
biologic markers (n ¼ 107, median RR ¼ 2.30), dietary
factors (n ¼ 74, median RR ¼ 1.59), psychosocial factors
(n ¼ 26, median RR ¼ 1.80), body characteristics (n ¼ 21,
median RR ¼ 1.90), toxic exposures (n ¼ 6, median RR ¼
n ¼ 2.97), physical activity (n ¼ 6, median RR ¼ 1.88), and
various other factors (n ¼ 32, median RR ¼ 2.26) (table 1).
Expectedly, the median relative risk in the 50 genetic meta-
analyses was smaller (RR ¼ 1.43) than in the other fields.
The standard deviation of the observed effects was, on av-
erage, smaller in the 50 genetic meta-analyses than in single
studies of other fields.

Bayes factors for single epidemiologic studies

The statistically significant results did not offer any sub-
stantial support to the probed association in many studies
(28–62 percent, depending on the specification of the prior
distribution) (table 2). The support was less than strong in
54–77 percent of the studies. Only 9–25 percent of the

TABLE 1. Characteristics of studies included in an analysis of

calculation of the Bayes factor under different assumptions

Diverse
epidemiologic

studies (n ¼ 272)

Genetic
meta-analyses

(n ¼ 50)

Study design and metric

Case-control, odds ratio 51 0

Cohort, odds ratio 65 0

Cohort, relative risk 156 0

Meta-analysis, odds ratio 0 50

Median relative risk* 1.96 (1.54–2.66)y 1.43 (1.29–1.65)

Median standard deviation 0.23 (0.14–0.34) 0.11 (0.08–0.17)

* Coined so as to be consistently greater than or equal to 1.00.

yNumbers in parentheses, interquartile range.
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studies yielded decisive support. The proportion of results
offering less than strong support was very similar for a wide
range of alternative priors (RRs ¼ 1.28–7.39). Support for
the observed associations was at its weakest when the alter-
native assumed a very small effect (RR ¼ 1.11). The pro-
portion of results that had less than strong support did not
have obvious differences across different fields (e.g., 55–78
percent for dietary risk factors and 53–87 percent for bi-
ologic markers) or for different types of designs (e.g., 49–86
percent for case-control studies with odds ratios, 54–75

percent for cohort studies with relative risks, and 55–77
percent for cross-sectional cohort studies with odds ratios).

Figure 1 and figure 2 show B as a function of the observed
p value for hA of 0.50 and 1.50, respectively (i.e., relative
risks of 1.65 and 4.48). None of the 122 associations
with p values of 0.01–0.05 had strong support (B < 0.10).
Even among the 150 associations with p < 0.01, less than
strong support was seen in 25 and 43 associations, respec-
tively, depending on hA. Among the 91 associations with
p< 0.001, 26 and 30 associations, respectively, did not have

TABLE 2. Categorization of Bayes factors (B) for 272 diverse epidemiologic studies under various prior assumptions

Estimated Bayes factor category

Assumption for the effect hA under the alternative hypothesis, given a positive effect

0.1 0.25 0.5 1 1.5 2
Field

median*

No.y %y No. % No. % No. % No. % No. % No. %

>1.00 (credibility worsened) 0 0 0 13 5 31 11 47 17 1 0

0.32–1.00 (bare mention) 169 62 97 36 77 28 84 31 80 29 80 29 76 28

0.10–0.32 (substantial support) 42 15 71 26 70 26 61 22 54 20 39 14 73 27

0.032–0.10 (strong support) 28 10 28 10 35 13 25 9 21 8 29 11 31 11

0.010–0.032 (very strong support) 9 3 21 8 25 9 24 9 25 9 19 7 23 9

<0.010 (decisive) 24 9 55 20 65 24 65 24 61 22 58 21 68 25

* Median effect size for studies in the same field.

yNumber and percentage of studies.

FIGURE 1. Estimated Bayes factors for 272 epidemiologic studies with formally statistically significant results. The Bayes factor is plotted against
the observed p value in each study. Shown are calculations assuming hA of 0.50 (relative risk ¼ 1.65). The dashed lines correspond to threshold
values (1.00, 0.32, 0.10) separating different Bayes factor categories.
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decisive support. All associations with p < 0.00001 had de-
cisive support, but only 37 associations passed this threshold.

For hA ¼ 1.50, in 11 percent of studies the credibility of
the probed association actually decreased despite nominally
statistically significant results.

Bayes factors for meta-analyses of genetic
associations

The statistically significant results did not offer any sub-
stantial support to the probed association in 18–48 percent
of the meta-analyses, depending on the prior (table 3). The
support was less than strong in 44–70 percent of the meta-
analyses. Only 12–22 percent of the meta-analyses had
decisive support. However, for genetic associations, large
effects hA are not very reasonable alternatives. After exclud-
ing hA values of 1.5 and 2.0 (corresponding to relative risks
of 4.48 and 7.39, respectively), the proportion of results that
did not offer substantial support to the probed association
ranged from 18 percent to 32 percent, and the support was
less than strong in 44–62 percent of the meta-analyses;
again, 12–22 percent of the meta-analyses offered decisive
support. Support for the observed associations was at its
weakest when large effects were assumed under the alternative
(RR ¼ 7.39).

Figure 3 shows B as a function of the observed p value,
for hA equal to the median relative risk across the 50 asso-

ciations (RR ¼ 1.43). None of the 17 genetic associations
with p values of 0.01–0.05 had strong support (B < 0.10),
while even among the 33 associations with p < 0.01, less
than strong support was seen for six associations. Among
the 15 associations with p < 0.001, four did not have de-
cisive support. Only four associations had p < 0.00001, and
all of them had decisive support.

One nominally significant meta-analysis practically did
not change at all the credibility of the association. As de-
scribed below, an update of that meta-analysis resulted in
loss of statistical significance (24).

Evolution of evidence

Twelve meta-analyses offered less than substantial sup-
port and 11 meta-analyses offered decisive support for the
probed association. Six meta-analyses from the former
group (25–30) and seven from the latter group (31–37)
had been followed by subsequent meta-analyses (table 4)
(24, 38–47). Different contrasts were selected in six sub-
sequent meta-analyses, and eligibility criteria were con-
siderably wider in two meta-analyses and considerably
more restricted in another two than in their earlier published
counterparts (table 4).

In five of the six meta-analyses that offered less than sub-
stantial support, evolution of the evidence resulted in a non-
statistically significant summary effect. Even in the one

FIGURE 2. Estimated Bayes factors for 272 epidemiologic studies with formally statistically significant results. The Bayes factor is plotted against
the observed p value in each study. Shown are calculations assuming hA of 1.50 (relative risk ¼ 4.48). The dashed lines correspond to threshold
values (1.00, 0.32, 0.10) separating different Bayes factor categories.
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association for which formal statistical significancewasmain-
tained, the Bayes factor from the newer meta-analysis barely
crossed the threshold of offering substantial support (B ¼
0.28). Somechanges in formal statistical significance occurred
very rapidly. For example, in a meta-analysis of SerSer homo-
zygosity for the Ser9Gly polymorphism of the dopamine re-
ceptor D3 (DRD3) gene across 40 studies with 8,761 subjects,
Jonsson et al. (29) found a nominally statistically significant
summary effect (odds ratio ¼ 1.10, 95 percent confidence in-
terval: 1.01, 1.21; p ¼ 0.031) for schizophrenia. The same
team revisited this association a year later after including four

additional studies, for a total sample size of 11,066 subjects,
and the association was no longer nominally significant (24).

Conversely, results remained formally statistically signifi-
cant in all seven associations for which the original meta-
analysis had offered decisive support. However, the Bayes fac-
tor fromthe newmeta-analysis remainedat the level of decisive
support in only three cases, while support became weaker in
the other four. For the postulated association between the
apolipoprotein E (APOE) gene and ischemic stroke, the more
recent meta-analysis had a borderline significant effect that
provided practically no support for the association (B¼ 0.92).

TABLE 3. Categorization of Bayes factors (B) for 50 genetic meta-analyses under various prior assumptions

Estimated Bayes factor category

Assumption for the effect hAunder the alternative hypothesis, given a positive effect

0.1 0.25 0.5 1 1.5 2
Field

median*

No.y %y No. % No. % No. % No. % No. % No. %

>1.00 (credibility worsened) 0 0 1 2 6 12 12 24 13 26 0

0.32–1.00 (bare mention) 16 32 9 18 13 26 10 20 8 16 11 22 12 24

0.10–0.32 (substantial support) 15 30 13 26 10 20 13 26 11 22 11 22 11 22

0.032–0.10 (strong support) 11 22 11 22 10 20 13 26 11 22 11 22 11 22

0.010–0.032 (very strong support) 2 4 6 12 6 12 3 6 4 8 4 8 6 12

<0.010 (decisive) 6 12 11 22 10 20 9 18 8 16 6 12 11 22

*Median effect size for all 50 meta-analyses of genetic associations.

yNumber and percentage of studies.

FIGURE 3. Estimated Bayes factors for 50 meta-analyses of genetic associations with formally statistically significant results. The Bayes factor is
plotted against the observed p value in each meta-analysis. Calculations assume hA equal to the median relative risk observed in the 50 genetic
associations (relative risk¼ 1.44). The dashed lines correspond to threshold values (1.00, 0.32, 0.10) separating different Bayes factor categories.
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TABLE 4. Comparison of subsequent versus earlier meta-analyses in genetic associations whose original meta-analysis offered less than substantial support and in those

where it offered decisive support*

Earlier
meta-analysis

(ref. no.)

Gene (variant);
contrast

Disease

Earlier
meta-analysis

Subsequent
meta-analysis

Subsequent
meta-analysis

(ref. no.)

Differences in
contrast/eligibility

Bayes factory

Effect 95% CIz Effect 95% CI

No substantial support§

Boekholdt et al. (25) FGBz/FGB promoter
(455G/A); AA vs. GG

Myocardial infarction 1.46 1.00, 2.13 1.12 0.90, 1.41 Smith et al. (38) Allele/wider 0.48/NPz

Maraganore et al. (26) UCH-L1z (S18Y);
S/S vs. other

Parkinson’s disease 1.20 1.02, 1.40 0.96 0.86, 1.08 Healy et al. (39) None/none 0.48/NP

Kosmas et al. (27) MTHFRz (677C/T);
TT vs. other

Preeclampsia 1.21 1.01, 1.45 1.01 0.79, 1.29 Lin et al. (40) None/none 0.60/NP

Burzotta et al. (28) F2z (20210G/A);
other vs. GG

Myocardial infarction 1.32 1.01, 1.72 1.25 1.05, 1.50 Ye et al. (41) Allele 0.51/0.28

Jonsson et al. (29) DRD3z (Ser9Gly)
SerSer vs. other

Schizophrenia 1.10 1.01, 1.21 1.05 0.97, 1.13 Jonsson et al. (24) None/none 0.98/NP

Combarros et al. (30) IL1Az (-889);
2/2 vs. other

Alzheimer’s disease 2.35 1.03, 5.37 1.08 0.98, 1.18 Bertram et al. (42) Allele/wider 0.49/NP

Decisive support{
Marcus et al. (31) NAT2z (acetylation);

slow/slow vs. other
Bladder cancer 1.43 1.20, 1.71 1.4 1.2, 1.6 Garcia-Closas

et al. (43)
None/none 0.003/0.0002

McCarron et al. (32) APOEz (epsilon 2/3/4);
allele 4 vs. other

Ischemic
cerebrovascular
disease

1.69 1.37, 2.09 1.11 1.01, 1.22 Sudlow et al. (44) Carriers/none <0.0001/0.92

Golbe et al. (33) MAPTz (allele A0);
allele A0 vs. other

Parkinson’s disease 1.52 1.22, 1.90 1.71 1.25, 2.36 Zhang et al. (45) Haplotype
H1H1/none

0.007/0.02

Johns et al. (34) GSTM1z (gene
deletion); null/null
vs. other

Bladder cancer 1.54 1.27, 1.86 1.5 1.3, 1.6 Garcia-Closas
et al. (43)

None/none 0.0003/<0.0001

Kosmas et al. (35) Factor V (Leiden
mutation); allele

Preeclampsia 2.22 1.46, 3.38 1.81 1.14, 2.87 Lin et al. (40) Carriers/none 0.008/0.18

Sethi et al. (36) AGTz (M235T);
TT vs. MM

Essential hypertension 1.35 1.18, 1.55 1.30 1.10, 1.54 Mondry et al. (46) None/restricted 0.0009/0.06

Hashibe et al. (37) GSTM1 (gene deletion);
null/null vs. other

Head and neck
cancers

1.32 1.14, 1.53 1.50 1.21, 1.87 Tripathy et al. (47) None/restricted 0.009/0.008

* The study by Mondry et al. (46) was limited to populations of Caucasian descent, and Tripathy et al. (47) also had more restricted eligibility criteria, in comparison with their respective

earlier meta-analyses. Conversely, Smith et al. (38) addressed all coronary artery disease and Bertram et al. (42) addressed all Alzheimer’s disease, while Combarros et al. (30) addressed

early onset in the presented estimate.

y The pairs show the Bayes factors based on the earlier meta-analysis and the subsequently published meta-analysis. An effect designated ‘‘not pertinent’’ is one that is not formally

significant.

z CI, confidence interval; FGB, fibrinogen beta chain; NP, not pertinent; UCH-L1, ubiquitin carboxyl-terminal esterase L1; MTHFR, methylenetetrahydrofolate reductase; F2, coagulation

factor II; DRD3, dopamine receptor D3; IL1A, interleukin-1A; NAT2, N-acetyltransferase 2; APOE, apolipoprotein E; MAPT, microtubule-associated protein tau; GSTM1, glutathione

S-transferase M1; AGT, angiotensinogen.

§ No substantial support for an effect in the earlier meta-analysis.

{ Decisive support for an effect in the earlier meta-analysis.
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DISCUSSION

Evaluation of a large number of observational associa-
tions demonstrates that most of the formally statistically
significant results in this extensive literature did not convey
strong support for the probed associations. This conclusion
was relatively robust to different prior assumptions. Statis-
tically significant results occasionally even decreased the
level of support for an association in comparison with what
was thought before the study was conducted. Moreover,
with one exception, all examined meta-analyses with less
than substantial support lost their formal significance when
subsequent meta-analyses on the same association were
published just 1–5 years later. Meta-analyses with decisive
support did not lose formal statistical significance, but they
often lost the decisiveness of the support in subsequent
meta-analyses.

These findings suggest that a very cautious interpretation
of nominally statistically significant findings is due in
observational research. Most statistically significant find-
ings do not markedly improve the credibility of the associ-
ations they probe. This applies to both single studies and
meta-analyses where several studies may have already ‘‘rep-
licated’’ a postulated association (48). One may thus under-
stand why several observational associations are refuted
upon further testing by either observational or randomized
designs (1–3, 15, 49).

The empirical evaluation showed that none of the associ-
ations with p values between 0.01 and 0.05 had strong sup-
port. These associations accounted for almost half of the
‘‘statistically significant’’ associations. Using a more strin-
gent threshold of statistical significance would dismiss
many spuriously statistically significant claims that lacked
strong support, but many associations with strong or even
decisive support might also be dismissed, especially if the
threshold were set too low. Associations with similar infer-
ences based on statistical significance may have different
inferences based on Bayes factors. Therefore, a single shift
in the threshold of claiming statistical significance is un-
likely to solve the problem. Bayes factors should be adopted
routinely in interpreting observational results.

Conversely, one potential disadvantage of the Bayesian
approach is the dependence on the specification of the prior.
However, if Bayesian approaches are more widely adopted,
it should be readily feasible to adopt a standard set of sen-
sitivity analyses regarding prior specification, and this
would allow comparability of results across studies. More-
over, the qualitative inferences usually remain quite robust
under different prior assumptions (50). Furthermore, in
many cases where a large body of research already exists
in a specific field, the plausible alternatives could be poten-
tially limited to a relatively narrow range. For example,
based on a large body of studies on genetic associations
for common variants, it is currently clear that large odds
ratios are very uncommon; thus, these could be safely ex-
cluded from the typical consideration of alternatives. Con-
versely, large odds ratios may need to be considered for rare
variants. Finally, as Berger et al. pointed out (51, 52), in fact
frequentist methods may converge towards the Bayesian, if
properly modeled as a conditional frequentist approach.

Through the use of a sample of meta-analyses, the present
study shows empirically that statistically significant associ-
ations that did not have substantial support almost always
also lost their nominal statistical significance when subse-
quent meta-analyses were performed with updated evi-
dence. This sequential evaluation of evidence was limited
to few topics and only one field of epidemiologic investiga-
tion. Further prospective studies should be encouraged to
test the independent replication and validation of associa-
tions for which inferences have been qualitatively very dif-
ferent with the frequentist versus Bayesian approaches.

Some additional caveats must be discussed. First, the
present evaluation focused on B without trying to estimate
the poststudy odds for each association. Poststudy odds also
depend on prestudy odds. One needs to define carefully the
prestudy odds of observational research in each field and
setting. Probably much observational research operates in
low prestudy odds. This is increasingly common nowadays
with massive testing of hypotheses through suitable biologic
platforms (e.g., microarrays, proteomics, whole-genome as-
sociation studies). When the tested biologic factors are enor-
mous and only a few are expected to represent true
associations, prestudy odds may be in the range of 10�4 to
10�8 or even lower. In such circumstances, even decisive
support (B < 0.01) is insufficient; Bayes factors several log
scales lower are needed to make a probed association cred-
ible. In some fields, such as molecular epidemiology, false-
discovery rate and Bayesian approaches have already been
widely adopted (53). For most traditional fields of epidemi-
ology, much resistance towards such approaches may
be exactly due to lack of consensus on the prestudy odds.
Routine use of Bayes factors would help investigators avoid
this problem.

Second, we have no guarantee that evidence always and
continuously evolves towards the correct answer (54). Thus,
some early meta-analyses with statistically significant re-
sults may have identified some true association, but statis-
tical significance was lost in a subsequent meta-analysis
because of chance or errors and biases. However, we have
no empirical justification for this theoretical claim. Third,
the presented analyses do not delve at all into the possibility
of biases in the observational literature that may further
decrease the credibility of specific associations. Finally,
there is the question of how representative the two examined
databases are for observational research at large. The first
database used the term ‘‘cohort’’ in the search strategy (de-
tails presented in reference 14) but did not exclude case-
control studies. It is thus considerably enriched in cohort
studies compared with what one would expect from an en-
tirely random sample of the epidemiologic literature. How-
ever, the distribution of p values is similar to what has been
seen in other empirical evaluations of random samples of
epidemiologic studies (55), where again a large portion of
‘‘significant’’ p values hover in the range of 0.01–0.05. If
anything, the selection tilt towards cohorts would tend to
promote the inclusion of larger and possibly better con-
ducted studies, on average. Moreover, B values were largely
similar between case-control studies and studies with cohort
or cross-sectional designs in the analyzed data. Conversely,
the database of genetic meta-analyses targeted, by default,
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a highly specialized field. The database is comprehensive
for early identified candidate genes (15–17). In the last 2
years, genome-wide association studies have started yield-
ing polymorphisms with extremely low statistical signifi-
cance levels (19, 56), but these should also be appraised in
the context of the background extreme multiple testing.
Otherwise, similar approaches could be used. Hopefully
the credibility of newer associations generated from a more
systematic (rather than one risk factor at a time) approach
will eventually be higher.

In conclusion, while the dangers of simply focusing on
nominal statistical significance have been repeatedly dis-
cussed (8, 57–59), the practice remains entrenched in the
biomedical literature and beyond. This represents an over-
arching problem of interpreting research results regardless
of study design (observational or randomized). Past discus-
sions have focused on theoretical concerns and selected
studies. The current large-scale evaluation provides addi-
tional empirical evidence favoring the routine use of Bayes
factors in interpreting ‘‘significant’’ results. This may help
us interpret more appropriately the otherwise useful insights
we can glean from observational studies.
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