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Recent advances in Bayesian hypothesis testing have led to the
development of uniformly most powerful Bayesian tests, which
represent an objective, default class of Bayesian hypothesis tests
that have the same rejection regions as classical significance tests.
Based on the correspondence between these two classes of tests,
it is possible to equate the size of classical hypothesis tests with
evidence thresholds in Bayesian tests, and to equate P values with
Bayes factors. An examination of these connections suggest that
recent concerns over the lack of reproducibility of scientific studies
can be attributed largely to the conduct of significance tests at
unjustifiably high levels of significance. To correct this problem,
evidence thresholds required for the declaration of a significant
finding should be increased to 25–50:1, and to 100–200:1 for the
declaration of a highly significant finding. In terms of classical
hypothesis tests, these evidence standards mandate the conduct
of tests at the 0.005 or 0.001 level of significance.

Reproducibility of scientific research is critical to the scientific
endeavor, so the apparent lack of reproducibility threatens

the credibility of the scientific enterprise (e.g., refs. 1 and 2).
Unfortunately, concern over the nonreproducibility of scientific
studies has become so pervasive that a Web site, Retraction Watch,
has been established to monitor the large number of retracted
papers, and methodology for detecting flawed studies has de-
veloped nearly into a scientific discipline of its own (e.g., refs. 3–9).
Nonreproducibility in scientific studies can be attributed to

a number of factors, including poor research designs, flawed
statistical analyses, and scientific misconduct. The focus of this
article, however, is the resolution of that component of the prob-
lem that can be attributed simply to the routine use of widely ac-
cepted statistical testing procedures.
Claims of novel research findings are generally based on the

outcomes of statistical hypothesis tests, which are normally con-
ducted under one of two statistical paradigms. Most commonly,
hypothesis tests are performed under the classical, or frequentist,
paradigm. In this approach, a “significant” finding is declared
when the value of a test statistic exceeds a specified threshold.
Values of the test statistic above this threshold define the test’s
rejection region. The significance level α of the test is defined to be
the maximum probability that the test statistic falls into the re-
jection region when the null hypothesis—representing standard
theory—is true. By long-standing convention (10), a value of α =
0.05 defines a significant finding. The P value from a classical test
is the maximum probability of observing a test statistic as extreme,
or more extreme, than the value that was actually observed, given
that the null hypothesis is true.
The second approach for performing hypothesis tests follows

from the Bayesian paradigm and focuses on the calculation of
the posterior odds that the alternative hypotheses is true, given
the observed data and any available prior information (e.g., refs.
11 and 12). From Bayes theorem, the posterior odds in favor of
the alternative hypothesis equals the prior odds assigned in favor
of the alternative hypotheses, multiplied by the Bayes factor. In
the case of simple null and alternative hypotheses, the Bayes factor
represents the ratio of the sampling density of the data evaluated
under the alternative hypothesis to the sampling density of the
data evaluated under the null hypothesis. That is, it represents the
relative probability assigned to the data by the two hypotheses. For
composite hypotheses, the Bayes factor represents the ratio of

the average value of the sampling density of the observed data
under each of the two hypotheses, averaged with respect to
the prior density specified on the unknown parameters under
each hypothesis.
Paradoxically, the two approaches toward hypothesis testing

often produce results that are seemingly incompatible (13–15).
For instance, many statisticians have noted that P values of 0.05
may correspond to Bayes factors that only favor the alternative
hypothesis by odds of 3 or 4–1 (13–15). This apparent discrep-
ancy stems from the fact that the two paradigms for hypothesis
testing are based on the calculation of different probabilities:
P values and significance tests are based on calculating the prob-
ability of observing test statistics that are as extreme or more
extreme than the test statistic actually observed, whereas Bayes
factors represent the relative probability assigned to the ob-
served data under each of the competing hypotheses. The latter
comparison is perhaps more natural because it relates directly to
the posterior probability that each hypothesis is true. However,
defining a Bayes factor requires the specification of both a null
hypothesis and an alternative hypothesis, and in many circum-
stances there is no objective mechanism for defining an alter-
native hypothesis. The definition of the alternative hypothesis
therefore involves an element of subjectivity, and it is for this
reason that scientists generally eschew the Bayesian approach
toward hypothesis testing. Efforts to remove this hurdle con-
tinue, however, and recent studies of the use of Bayes factors in
the social sciences include refs. 16–20.
Recently, Johnson (21) proposed a new method for specifying

alternative hypotheses. When used to test simple null hypotheses
in common testing scenarios, this method produces default
Bayesian procedures that are uniformly most powerful in the
sense that they maximize the probability that the Bayes factor in
favor of the alternative hypothesis exceeds a specified threshold.
A critical feature of these Bayesian tests is that their rejection
regions can be matched exactly to the rejection regions of clas-
sical hypothesis tests. This correspondence is important because
it provides a direct connection between significance levels,
P values, and Bayes factors, thus making it possible to objectively
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examine the strength of evidence provided against a null hy-
pothesis as a function of a P value or significance level.

Results
Let f ðxjθÞ denote the sampling density of the data x under both
the null (H0) and alternative (H1) hypotheses. For i = 0, 1, let
πiðθÞ denote the prior density assigned to the unknown param-
eter θ belonging to Θ under hypothesis Hi, let P(Hi) denote the
prior probability assigned to hypothesis Hi, and let miðxÞ denote
the marginal density of the data under hypothesis Hi, i.e.,

miðxÞ=
Z
Θ

f ðxjθÞπiðθÞdθ: [1]

The Bayes factor in favor of the alternative hypothesis is defined
as BF10ðxÞ=m1ðxÞ=m0ðxÞ.
A condition of equipoise is said to apply if p(H0) = p(H1) =

0.5. It is assumed that no subjectivity is involved in the specifica-
tion of the null hypothesis. Under these assumptions, a uniformly
most powerful Bayesian test (UMPBT) for evidence threshold γ,
denoted by UMPBT(γ), may be defined as follows (21).

Definition. A UMPBT for evidence threshold γ > 0 in favor of
the alternative hypothesis H1 against a fixed null hypothesis H0 is
a Bayesian hypothesis test in which the Bayes factor for the test
satisfies the following inequality for any θt ∈Θ and for all alter-
native hypotheses H1′ : θ∼ π1′ðθÞ:

Pθt ½BF10ðxÞ> γ�≥Pθt ½BF1′0ðxÞ> γ�: [2]

That is, the UMPBT(γ) is a Bayesian test in which the alter-
native hypothesis is specified so as to maximize the probability
that the Bayes factor BF10ðxÞ exceeds the evidence threshold γ
for all possible values of the data generating parameter θt.
Under mild regularity conditions, Johnson (21) demonstrated

that UMPBTs exist for testing the values of parameters in one-
parameter exponential family models. Such tests include tests of
a normal mean (with known variance) and a binomial proportion.
In SI Text, UMPBTs are derived for tests of the difference of
normal means, and for testing whether the noncentrality param-
eter of a χ2 random variable on one degree of freedom is equal
to 0. The form of alternative hypotheses, Bayes factors, rejection
regions, and the relationship between evidence thresholds and
sizes of equivalent frequentist tests are provided in Table S1.
The construction of UMPBTs is perhaps most easily illus-

trated in a z test for the mean μ of a random sample of normal
observations with known variance σ2. From Table S1, a one-sided
UMPBT of the null hypothesis H0 : μ= 0 against alternatives that
specify that μ> 0 is obtained by specifying the alternative hy-
pothesis to be

H1 : μ1 = σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞ

n

r
:

For z=
ffiffiffi
n

p
x=σ, the Bayes factor for this test is

BF10ðzÞ= exp
h
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞ

p
− logðγÞ

i
:

By setting the evidence threshold γ = 3:87, the rejection region of
the resulting test exactly matches the rejection region of a one-
sided 5% significance test. That is, the Bayes factor for this test
exceeds 3.87 whenever the sample mean of the data, x, exceeds
1:645σ=

ffiffiffi
n

p
, the rejection region for a classical one-sided 5% test.

If x= 1:645σ=
ffiffiffi
n

p
, then the UMPBT produces a Bayes factor that

achieves the bounds described in ref. 13. Conversely if x= 0, the
Bayes factor in favor of the alternative hypothesis is 1/3.87 = 0.258,

which illustrates that UMPBTs—unlike P values—provide evi-
dence in favor of both true null and true alternative hypotheses.
This example highlights several properties of UMPBTs. First,

the prior densities that define one-sided UMPBT alternatives
concentrate their mass on a single point in the parameter space.
Second, the distance between the null parameter value and the
alternative parameter value is typically Oðn−1=2Þ, which means
that UMPBTs share certain large sample properties with clas-
sical hypothesis tests. The implications of these properties are
discussed further in SI Text and in ref. 21.
Unfortunately, UMPBTs do not exist for testing a normal

mean or difference in means when the observational variance σ2

is not known. However, if σ2 is unknown and an inverse gamma
prior distribution is imposed, then the probability that the Bayes
factor exceeds the evidence threshold γ in a one-sample test can
be expressed as

P½BF10 > γ�=P½an < x< bn�; [3]

and in a two-sample test as

P½BF10 > γ�=P½an < x2 − x1 < bn�: [4]

In these expressions, an and bn are functions of the evidence
threshold γ, the population means, and a statistic that is ancillary
to both. Furthermore, bn →∞ as the sample size n becomes large.
For sufficiently large n, approximate, data-dependent UMPBTs can
thus be obtained by determining the values of the population means
that minimize an, because minimizing an maximizes the probability
that the sample mean or difference in sample means will exceed an,
regardless of the distribution of the sample means. The resulting
approximate UMPBT tests are useful for examining the connection
between Bayesian evidence thresholds and significance levels in
classical t tests. Expressions for the values of the population means
that minimize an for t tests are provided in Table S1.
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Fig. 1. Evidence thresholds and size of corresponding significance tests. The
UMPBT and significance tests used to construct this plot have the same (z, χ2, and
binomial tests) or approximately the same (t tests) rejection regions. The smooth
curves represent, from Top to Bottom, t tests based on 20, 30, and 60 degrees of
freedom, the z test, and the χ2 test on 1 degree of freedom. The discontinuous
curves reflect the correspondence between tests of a binomial proportion based
on 20, 30, or 60 observations when the null hypothesis is p0 = 0.5.
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Because UMBPTs can be used to define Bayesian tests that
have the same rejection regions as classical significance tests, “a
Bayesian using a UMPBT and a frequentist conducting a signif-
icance test will make identical decisions on the basis of the ob-
served data. That is, a decision to reject the null hypothesis at
a specified significance level occurs only when the Bayes factor in
favor of the alternative hypothesis exceeds a specified evidence
threshold” (21). The close connection between UMPBTs and
significance tests thus provides insight into the amount of evi-
dence required to reject a null hypothesis.
To illustrate this connection, curves of the values of the test

sizes (α) and evidence thresholds (γ) that produce matching re-
jection regions for a variety of standard tests have been plotted in
Fig. 1. Included among these are z tests, χ2 tests, t tests, and tests
of a binomial proportion.
The two red boxes in Fig. 1 highlight the correspondence

between significance tests conducted at the 5% and 1% levels of
significance and evidence thresholds. As this plot shows, the
Bayesian evidence thresholds that correspond to these tests are
quite modest. Evidence thresholds that correspond to 5% tests
range between 3 and 5. This range of evidence falls at the lower
end of the range that Jeffreys (11) calls “substantial evidence,” or
what Kass and Raftery (12) term “positive evidence.” Evidence
thresholds for 1% tests range between 12 and 20, which fall at
the lower end of Jeffreys’ “strong-evidence” category, or the upper
end of Kass and Raftery’s positive-evidence category. If equipoise
applies, the posterior probabilities assigned to null hypotheses
range from ∼0.17 to 0.25 for null hypotheses that are rejected at
the 0.05 level of significance, and from about 0.05 to 0.08 for nulls
that are rejected at the 0.01 level of significance.
The two blue boxes in Fig. 1 depict the range of evidence

thresholds that correspond to significance tests conducted at the
0.005 and 0.001 levels of significance. Bayes factors in the range
of 25–50 are required to obtain tests that have rejection regions
that correspond to 0.005 level tests, whereas Bayes factors be-
tween ∼100 and 200 correspond to 0.001 level tests. In Jeffreys’
scheme (11), Bayes factors in the range 25–50 are considered
“strong” evidence in favor of the alternative, and Bayes factors in
the range 100–200 are considered “decisive.” Kass and Raftery

(12) consider Bayes factors between 20 and 150 as “strong”
evidence, and Bayes factors above 150 to be “very strong”
evidence. Thus, according to standard scales of evidence, these
levels of significance represent either strong, very strong, or
decisive levels of evidence. If equipoise applies, then the cor-
responding posterior probabilities assigned to null hypotheses
range from ∼0.02 to 0.04 for null hypotheses that are rejected
at the 0.005 level of significance, and from about 0.005 to 0.01
for null hypotheses that are rejected at the 0.001 level of
significance.
The correspondence between significance levels and evidence

thresholds summarized in Fig. 1 describes the theoretical con-
nection between UMPBTs and their classical analogs. It is also
informative to examine this connection in actual hypothesis tests.
To this end, UMPBTs were used to reanalyze the 855 t tests
reported in Psychonomic Bulletin & Review and Journal of Exper-
imental Psychology: Learning, Memory, and Cognition in 2007 (20).
Because exact UMPBTs do not exist for t tests, the evidence

thresholds obtained from the approximate UMPBTs described in
SI Text were obtained by ignoring the upper bound on the re-
jection regions described in Eqs. 3 and 4. From a practical per-
spective, this constraint is only important when the t statistic for
a test is large, and in such cases the null hypothesis can be re-
jected with a high degree of confidence. To avoid this compli-
cation, t statistics larger than the value of the t statistic that
maximizes the Bayes factor in favor of the alternative were ex-
cluded from this analysis. Also, because all tests reported by
Wetzels et al. (20) were two-sided, the approximate two-sided
UMPBTs described in ref. 21 were used in this analysis. The two-
sided tests are obtained by defining the alternative hypothesis so
that it assigns one-half probability to the two alternative hy-
potheses that represent the one-sided UMPBT(2γ) tests.
To compute the approximate UMPBTs for the t statistics

reported in ref. 20, it was assumed that all tests were conducted
at the 5% level of significance. The Bayes factors corresponding
to the 765 t statistics that did not exceed the maximum value are
plotted against their P values in Fig. 2.
Fig. 2 shows that there is a strong curvilinear relationship

between the P values of the tests reported in ref. 20 and the
Bayes factors obtained from the UMPBT tests. Furthermore, the
relationship between the P values and Bayes factors is roughly
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Fig. 2. P values versus UMPBT Bayes factors. This plot depicts approximate
Bayes factors derived from 765 t statistics reported by Wetzels et al. (20). A
breakdown of the curvilinear relationship between Bayes factors and
P values occurs in the lower right portion of the plot, which corresponds to
t statistics that produce Bayes factors that are near their maximum value.
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Fig. 3. Histogram of P values that were less than 0.05 and reported in ref. 20.
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equivalent to the relationship observed with test size in Fig. 1. In
this case, P values of 0.05 correspond to Bayes factors around
5, P values of 0.01 correspond to Bayes factors around 20,
P values of 0.005 correspond to Bayes factors around 50, and
P values of 0.001 correspond to Bayes factors around 150. As
before, significant (P = 0.05) and highly significant (P = 0.01)
P values seem to reflect only modest evidence in favor of the
alternative hypotheses.

Discussion
The correspondence between P values and Bayes factors based
on UMPBTs suggest that commonly used thresholds for statis-
tical significance represent only moderate evidence against null
hypotheses. Although it is difficult to assess the proportion of all
tested null hypotheses that are actually true, if one assumes that
this proportion is approximately one-half, then these results
suggest that between 17% and 25% of marginally significant
scientific findings are false. This range of false positives is con-
sistent with nonreproducibility rates reported by others (e.g., ref.
5). If the proportion of true null hypotheses is greater than one-
half, then the proportion of false positives reported in the sci-
entific literature, and thus the proportion of scientific studies
that would fail to replicate, is even higher.
In addition, this estimate of the nonreproducibility rate of

scientific findings is based on the use of UMPBTs to establish the
rejection regions of Bayesian tests. In general, the use of other
default Bayesian methods to model effect sizes results in even
higher assignments of posterior probability to rejected null hy-
potheses, and thus to even higher estimates of false-positive rates.
This phenomenon is discussed further in SI Text, where Bayes
factors obtained using several other default Bayesian procedures
are compared with UMPBTs (see Fig. S1). These analyses suggest
that the range 17–25% underestimates the actual proportion of
marginally significant scientific findings that are false.
Finally, it is important to note that this high rate of nonre-

producibility is not the result of scientific misconduct, publica-
tion bias, file drawer biases, or flawed statistical designs; it is simply
the consequence of using evidence thresholds that do not repre-
sent sufficiently strong evidence in favor of hypothesized effects.
As final evidence of the severity of this effect, consider again

the t statistics compiled by Wetzels et al. (20). Although the
P values derived from these statistics cannot be considered
a random sample from any meaningful population, it is none-
theless instructive to examine the distribution of the significant
P values derived from these test statistics. A histogram estimate
of this distribution is depicted in Fig. 3.
The P values displayed in Fig. 3 presumably arise from two

types of experiments: experiments in which a true effect was
present and the alternative hypothesis was true, and experiments
in which there was no effect present and the null hypothesis
was true. For the latter experiments, the nominal distribution
of P values is uniformly distributed on the range (0.0, 0.05).
The distribution of P values reported for true alternative hypoth-
eses is, by assumption, skewed to the left. The P values displayed in
this plot thus represent a mixture of a uniform distribution and

some other distribution. Even without resorting to complicated
statistical methods to fit this mixture, the appearance of this his-
togram suggests that many, if not most, of the P values falling
above 0.01 are approximately uniformly distributed. That is, most
of the significant P values that fell in the range (0.01–0.05) prob-
ably represent P values that were computed from data in which the
null hypothesis of no effect was true.
These observations, along with the quantitative findings re-

ported in Results, suggest a simple strategy for improving the
replicability of scientific research. This strategy includes the
following steps:

(i) Associate statistically significant test results with P values
that are less than 0.005. Make 0.005 the default level of
significance for setting evidence thresholds in UMPBTs.

(ii) Associate highly significant test results with P values that are
less than 0.001.

(iii) When UMPBTs can be defined (or when other default
Bayesian procedures are available), report the Bayes factor
in favor of the alternative hypothesis and the default alter-
native hypothesis that was tested.

Of course, there are costs associated with raising the bar for
statistical significance. To achieve 80% power in detecting a
standardized effect size of 0.3 on a normal mean, for instance,
decreasing the threshold for significance from 0.05 to 0.005
requires an increase in sample size from 69 to 130 in experimental
designs. To obtain a highly significant result, the sample size of a
design must be increased from 112 to 172.
These costs are offset, however, by the dramatic reduction in

the number of scientific findings that will fail to replicate. In terms
of evidence, these more stringent criteria will increase the odds
that the data must favor the alternative hypothesis to obtain
a significant finding from ∼3–5:1 to ∼25–50:1, and from ∼12–15:1
to 100–200:1 to obtain a highly significant result. If one-half of
scientifically tested (alternative) hypotheses are true, then these
evidence standards will reduce the probability of rejecting a true
null hypothesis based on a significant finding from ∼20% to less
than 4%, and from ∼7% to less than 1% when based on a highly
significant finding. The more stringent standards will thus reduce
false-positive rates by a factor of 5 or more without requiring even
a doubling of sample sizes.
Finally, reporting the Bayes factor and the alternative hy-

pothesis that was tested will provide scientists with a mechanism
for evaluating the posterior probability that each hypothesis is
true. It will also allow scientists to evaluate the scientific impor-
tance of the alternative hypothesis that has been favored. Such
reports are particularly important in large sample settings in which
the default alternative hypothesis provided by the UMPBT may
represent only a small deviation from the null hypothesis.
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SI Text
This supplement contains two sections. The first section presents
a comparison of Bayes factors obtained using uniformly most
powerful Bayesian tests (UMPBTs) to Bayes factors obtained
using standard Cauchy priors (1–3), intrinsic priors (4), and
Bayesian information criterion (BIC)-based approximations to
Bayes factors (5–7), all in the context of z tests. In the second,
several lemmas are presented that describe the UMPBT(γ) in
common testing scenarios. Finally, a table summarizing the re-
sults of these lemmas is provided.

Comparison of Bayes Factors
In this section, Bayes factors generated fromUMPBT alternatives
are compared with Bayes factors obtained from other default
Bayesian testing procedures. Each Bayesian testing procedure
was used to test whether the mean μ of a random sample of n
normal observations with known variance σ2 = 1 was equal to 0.
Several default procedures were tested. The first, due to Jeffreys
(1), is based on the assumption that the prior density for μ under
the alternative hypothesis is a standard Cauchy distribution. The
extension of this test for unknown σ2 leads to the Zellner–Siow
prior for linear models (2) and testing procedures advocated for
psychological tests in ref. 3. The second default method was
obtained by assuming an intrinsic prior for μ under the alter-
native hypothesis (4). The third default method was based on
converting the BIC criterion (5) into an approximate Bayes
factor, as suggested in refs. 6 and 7.
The prior densities that define the alternative hypothesis in the

comparison group are based on the specification of local alter-
native prior densities, which means that the order at which they
accumulate evidence in favor of a true null hypothesis is only
Opðn1=2Þ (8). This slow rate of convergence occurs because local
alternative prior densities are not zero at the parameter value
the defines a point null hypothesis. Data that support the null
hypothesis thereby also provide some support to the alternative,
making it difficult to distinguish between the two hypotheses
when the null is true. In contrast, the evidence achieved by the
UMPBTs in favor of true null hypotheses is bounded by a func-
tion of the evidence threshold γ. This means that only a finite
amount of evidence can be obtained in favor of a true null hy-
pothesis if γ is held constant as the sample size grows.
All tests were considered to be two-sided. The prior densities

for μ under the alternative hypotheses in the approximate
UMPBT(γ) two-sided tests were defined by placing one-half of
the prior mass corresponding to each of the one-sided UMPBT
(2γ)s on μ.
The Bayes factors in favor of the alternative hypotheses under

each testing procedure can be expressed as follows.

Cauchy.

BFC
10ðxÞ= exp

�
nx2

2

� Z∞

−∞

exp
�
−nðx− μÞ2=2�
πð1+ μ2Þ   dμ:

Intrinsic.

BFI
10ðxÞ=

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n+ 1

p exp

"
ðnxÞ2
2n+ 1

#
:

[Note that the intrinsic prior in this setting is μ∼Nð0; 2Þ.]

BIC.

BFB
10ðxÞ= exp

�
0:5

�
nx2 − logðnÞ��:

UMPBT.

BFU
10ðxÞ= exp

�
nx2

2

�
	
1
2
exp

h
−0:5nðx− μuÞ2

i
+
1
2
exp

h
−0:5nðx+ μuÞ2

i

;

where

μu =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logð2γÞ

n

r
:

To study the behavior of the Bayes factors obtained under each
of the four procedures, the sample mean of the observed data was
assumed to take one of the four values (0, 0.2, 0.4, 0.6). Note that
the first value of 0 provides as much evidence in favor of the null
hypothesis as can be obtained from the data. The remaining
values represent standardized effect sizes of 0.2, 0.4, and 0.6,
respectively, because the observational variance is 1. For each
assumed value of the sample mean, the sample size was in-
creased from 1 until either a sample size of 5,000 was reached or
until the maximum of the Bayes factors exceeded 5,000. These
maximum values were imposed to retain detail in the plots for
values of the Bayes factors that are of practical interest. Finally,
the evidence threshold γ for the UMPBT was determined by
equating the rejection region for this test to the rejection region
of a two-sided classical test of size 0.005. That is, γ was equal to
exp(2.8072/2)/2 = 25.7.
The value of the Bayes factors obtained under these combi-

nations of sample means and sample sizes is displayed in Fig. S1.
This figure reveals a number of interesting features. Among
these, this plot illustrates the consistency of the Bayes factors
corresponding to the Cauchy, intrinsic, and BIC procedures.
These procedures all produce Bayes factors that tend to 0 when
x= 0 and the sample size grows, even though this convergence is
slow. In contrast, the UMPBT-based Bayes factor—based on
a fixed evidence threshold γ—is constant and approximately
equal to 1=2γ when x= 0, independently of the sample size. In
this respect, UMPBT tests with fixed evidence thresholds are
similar to classical hypothesis tests: both maintain a constant
“type I error” as the sample size is increased. Preliminary rec-
ommendations for increasing γ with sample size to achieve con-
sistency are provided in ref. 9. Similarly, UMPBT-based Bayes
factors eventually become smaller than the other three Bayes
factors as n grows when γ is held constant, even though the
UMPBT is consistent under a true alternative.
For sample sizes typically achieved in practice, the UMPBT-

based Bayes factors appear to provide more useful summaries of
the evidence in favor of either a true null or true alternative
hypothesis than do the other Bayes factors. When x= 0 for ex-
ample, the Bayes factor in favor of the null hypothesis is ∼50 for
all values of n, whereas the other Bayes factors do not achieve
this level of support for the null hypothesis until n is greater than
∼1,250 (intrinsic), 1,700 (Cauchy), or 2,500 (BIC). For a stan-
dardized effect size of 0.2, none of the Bayes factors becomes
much larger than 1 until sample sizes of about 50 are obtained,
and then the UMPBT-based Bayes factors are larger than the
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other Bayes factors for all sample sizes for which the Bayes
factors are all less than 5,000. Similar comments apply to ob-
served effect sizes of 0.4 and 0.6, except that smaller sample sizes
are needed for all of the Bayes factors to exceed 1. As stated in
the main article, these observations demonstrate that UMPBT-
based Bayes factors produce more extreme Bayes factors than
other default Bayesian procedures for sample sizes and effect
sizes of practical interest. This means that the false-positive rates
that would be estimated from the other procedures for margin-
ally significant P values would be higher than 17–25%, the range
suggested by the use of UMPBTs.
The relative performance of the various Bayes factors for small

values of n is also interesting. For all values of x considered, the
UMPBT-based Bayes factors obtained for n< 5 suggest more
support for the null hypotheses than do the other hypothesis
tests. This fact can be attributed to the fact that the UMPBTs are
obtained using nonlocal alternative priors on μ, whereas the
other tests are based on local priors. As demonstrated in ref. 8,
this means that UMPBTs are able to more quickly obtain evi-
dence in support of the null hypothesis. For instance, when
x= 0:2 and n= 1, the UMPBT-based Bayes factor suggests strong
support for the null hypothesis, whereas the other Bayes factors
assume noncommittal values near 1.0.
When viewed from a scientific perspective, the evidence pro-

vided by UMPBTs in favor of the null hypothesis for small values
of n and values of jxj≤ 0:6 seems quite reasonable. Clearly, most
scientists would not design an experiment to test whether a nor-
mal mean was equal to 0 with fewer than five observations. Unless,
of course, μ was assumed to be large relative to σ under the al-
ternative hypothesis. Under such an assumption, the observation
of a sample mean less than 0.6σ provides strong evidence in favor
of the null hypothesis.
Along similar lines, most classical statisticians regard the

sample size n as fixed and ancillary when they conduct hypothesis
tests. Under this assumption, UMPBTs violate the likelihood
principle because the alternative hypothesis depends on n. In
actual practice, however, the sample size selected by a researcher
to test an effect size is generally highly informative about the
magnitude of that effect size. For instance, few researchers
would collect 100,000 observations to detect a standardized ef-
fect size of 0.4. A scientist who collects this many observations
obviously hopes to detect a much subtler departure from the
standard theory. It is also worth noting that sample size calcu-
lations themselves require the specification of an alternative
hypothesis.
Because the value of the sample size selected for an experiment

often reflects prior information regarding the magnitude of an
effect size, it is the author’s opinion that it is appropriate (and
often desirable) to use the sample size chosen by an investigator
to specify an alternative hypothesis.

Lemmas
The following lemmas describe the UMPBTðγÞ for several
common tests.

Lemma 1. Suppose X1; . . . ;Xn are independent and identically dis-
tributed (iid) according to a normal distribution with mean μ and
variance σ2 (i.e., Nðμ; σ2Þ). Then the one-sided UMPBT(γ) for testing
H0 : μ= μ0 against any alternative hypothesis that requires μ> μ0
is obtained by taking H1 : μ= μ1, where

μ1 = μ0 + σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞ

n

r
: [S1]

Similarly, the UMPBT(γ) one-sided test for testing μ< μ0 is ob-
tained by taking

μ1 = μ0 − σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞ

n

r
:

Proof: Provided in ref. 9.

Lemma 2. Suppose X1;1; . . . ;X1;n1 are iid N
�
μ− n2

n1 + n2
δ; σ2

�
, and

X2;1; . . . ;X2;n2 are iid N
�
μ+ n1

n1 + n2
δ; σ2

�
, where σ2 is known and

the prior distribution for μ is assumed to be uniform on the real line.
The one-sided UMPBT(γ) for testing H0 : δ= 0 against alternatives
that require δ> 0 is obtained by taking

H1 : δ= σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn1 + n2ÞlogðγÞ

n1n2

s
: [S2]

Proof.Consider first simple alternative hypotheses on δ> 0. Up
to a constant factor that arises from the uniform distribution on
μ, the marginal distribution of the data under the null hypothesis
can be obtained by integrating out μ to obtain

m0ðxÞ=


2πσ2

�−ðn1+n2−1Þ=2ðn1 + n2Þ−1=2

× exp

"
−

1
2σ2

X2
j= 1

Xnj
i= 1



xj;i − xj

�2#
: [S3]

Similarly, the marginal distribution of the data under the al-
ternative that μ2 − μ1 = δ can be obtained by integrating out μ to
obtain

m1ðxÞ=m0ðxÞexp
	
−

1
2σ2

�
n1n2
n1 + n2

δ2 −
2n1n2
n1 + n2

ðx2 − x1Þδ
�


: [S4]

It follows that

P½logðBF10Þ> logðγÞ�=P
�
x2 − x1 >

ðn1 + n2Þσ2logðγÞ
n1n2δ

+
δ

2

�
: [S5]

Regardless of the distribution of ðx2 − x1Þ, this probability can be
maximized by minimizing the right-hand side of the last inequal-
ity with respect to δ. The UMPBT value for δ is thus

δ p = σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn1 + n2ÞlogðγÞ

n1n2

s
: [S6]

Now consider composite alternative hypotheses, and let BF10ðδÞ
denote the value of the Bayes factor when evaluated at a
particular value of δ and fixed x. Define an indicator function s
according to

sðx; δÞ= IndðBF10ðδÞ> γÞ: [S7]

Then it follows from Eq. S5 that

sðx; δÞ≤ sðx; δ p Þ   for all x: [S8]

This implies that

Z∞

0

sðx; δÞπðδÞ≤ sðx; δ p Þ [S9]

for all probability densities πðδÞ. It follows that
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PδtðBF10 > γÞ=
Z
X

sðx; δÞf ðxjδtÞdδt [S10]

is maximized by a prior density that concentrates its mass δp. Here
f ðxjδtÞ is the sampling density of x for δ= δt,

Lemma 3. Suppose that X is distributed according to a χ2 distribution
on 1 degree of freedom and noncentrality parameter λ; that is,
X ∼ χ21ðλÞ. The UMPBT(γ) for testing H0 : λ= 0 is obtained by
taking H1 : λ= λ1, where λ1 is the value of λ that minimizes

1ffiffiffi
λ

p log
�
eλ=2γ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eλγ2 − 1

p �
: [S11]

Proof. As in Lemma 2, consider first simple alternative hy-
potheses on λ> 0. By taking the ratio of a noncentral χ2 density
on 1 degree of freedom to the central χ2 density on 1 degree of
freedom, it follows that the Bayes factor in favor of the alter-
native can be expressed as

X∞
i=0

eλ=2Γ
�
1
2

��
λx
2

�i

i!2iΓ
�
1
2
+ i

� : [S12]

Noting that

Γ
�
1
2
+ i

�
=
ð2iÞ!Γð1=2Þ

4ii!
; [S13]

and that

cosh
� ffiffiffiffiffi

λx
p �

=
X∞
i=0

ðλxÞi
ð2iÞ!; [S14]

it follows that

BF10ðλÞ= e−λ=2cosh
� ffiffiffiffiffi

λx
p �

: [S15]

The probability that the Bayes factor exceeds the evidence thresh-
old is given by

Pλt ½BF10 > γ�=Pλt

�
cosh


 ffiffiffiffiffi
λx

p �
> eλ=2γ

�
=Pλt

h ffiffi
x

p
> λ−1=2   log

�
eλ=2γ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eλγ2 − 1

p �i
:

[S16]

Minimizing the right-hand side of the inequality maximizes the
probability, regardless of the value of λt. The extension to com-
posite hypotheses follows along from the same logic used in Eqs.
S7–S10.

Lemma 4. Suppose that X has a binomial distribution with success
probability p and denominator n. The UMPBT(γ) for testing
H0 : p= p0 against alternatives that require p> p0 is obtained by
taking H1 : p= p1, where p1 is the value of p that minimizes

logðγÞ− n½logð1− pÞ− logð1− p0Þ�
log½p=ð1− pÞ�− log½p0=ð1− p0Þ� : [S17]

The UMPBT(γ) for alternatives that require p< p0 is obtained by
taking p1 to be the value of p that maximizes Eq. S17.

Proof. Provided in ref. 9.

Lemma 5. Assume that the conditions of Lemma 1 apply, except that
σ2 is not known. Suppose that the prior distribution for σ2 is an
inverse gamma distribution with parameters α and λ, and define

x=
1
n

Xn
i=1

Xi;    W =
Xn
i=1

ðxi − xÞ2 + 2λ;    and    γ p = γ
2

n+α: [S18]

Then the value of μ1 that minimizes an in Eq. S4 is

μ1 = μ0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W ðγ p − 1Þ

n

r
: [S19]

If a noninformative prior is assumed for σ2 (i.e., α= λ= 0), then
the UMPBT(γ) alternative is obtained by taking

μ1 = μ0 + s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ p − 1Þ ðn− 1Þ

n

r
;

where

s2 =
1

n− 1

Xn
i=1

ðxi − xÞ2:

Proof.As in the previous proofs, consider first the case of simple
alternative hypotheses. By integrating out the variance parameter,
it follows that the Bayes factor in favor of the alternative hypothesis
can be expressed as

BF10ðμ1Þ=
"
W + nðx− μ0Þ2
W + nðx− μ1Þ2

#n=2+α

: [S20]

After some algebra, this expression leads to the following
equation:

Pμt ½BF10ðμ1Þ> γ�=Pμt ½an < x< bn�; [S21]

where

an =
γ p μ1 − μ0
γ p − 1

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ p ðμ1 − μ0Þ2
ðγ p − 1Þ2 −

W
n

s
[S22]

and

bn =
γ p μ1 − μ0
γ p − 1

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ p ðμ1 − μ0Þ2
ðγ p − 1Þ2 −

W
n

s
: [S23]

Minimizing an as a function of μ1 leads to the stated result.

Lemma 6.Assume that the conditions of Lemma 2 apply, except that
the variance σ2 is unknown. Suppose the prior distribution for σ2 is
an inverse gamma distribution with parameters α and λ, and define

xj =
1
nj

Xnj
i=1

xj;i;   W =
X2
j=1

Xnj
i=1



xj;i − xj

�2 + 2λ;    and   γ p = γ
2

n1+n2+2α−1:

[S24]

Then the value of δ than minimizes an in Eq. S5 is

δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W ðγ p − 1Þðn1 + n2Þ

n1n2

s
: [S25]

Johnson www.pnas.org/cgi/content/short/1313476110 3 of 5

www.pnas.org/cgi/content/short/1313476110


Taking α= λ= 0 and

s2 =
1

n1 + n2 − 2

X2
j=1

Xnj
i=1



xj;i − xj

�2
;

the UMPBT(γ) alternative is defined by taking

δ= s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ p − 1Þνðn1 + n2Þ

n1n2

s
:

Proof. Similar to the proofs of Lemmas 2 and 5. Using the
expressions for the marginal distributions obtained in the case of
a known variance in Lemma 2, it can be shown that the Bayes
factor takes the form of the ratio of t densities. Solving for the
difference in means μ2 − μ1 leads to an inequality similar to Eq.
S21, and the result follows.
A summary of the results of Lemmas 1–6 appears in Table S1.

Also provided in this table are expressions for the Bayes factors
(expressed in terms of standard test statistics), rejection regions,
and the relation between evidence threshold γ and the size of the
corresponding classical test.
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Fig. S1. Comparison of default Bayesian procedures for testing a null hypothesis that the mean of n Nðμ,1Þ random variables is 0.
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Table S1. Properties of UMPBTs in common testing situations

Test Variables H1 Bayes factor Reject region γ = fðαÞ

One-sample z z=
ffiffiffi
n

p ðx − μ0Þ
σ μ1 = μ0 + σ

ffiffiffiffiffiffiffiffiffiffiffi
2logðγÞ

n

q
exp

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞp

− logðγÞ� z>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞp

γ =exp
�
z2α
2

�

Two-sample z z=
ffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 +n2

q
x2 − x1

σ δ= σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn1 +n2ÞlogðγÞ

n1n2

q
exp

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞp

− logðγÞ� z>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2logðγÞp

γ =exp
�
z2α
2

�

One-sample t t =
ffiffiffi
n

p ðx − μ0Þ
s

s2 =
Pn

i=1
ðxi − xÞ2

n− 1 μ1 = μ0 + s
ffiffiffiffiffiffiffiffiffiffiffiffi
νγp=n

p �
ν+t2

ν+½t − ffiffi
ν

p
γp�2

�m

t >
ffiffiffiffiffiffiffi
νγp

p
γ =

�
t2α
ν+1

�m

ν=n−1

γp = γ2=n −1

m=n=2

Two-sample t t =
ffiffiffiffiffiffiffiffiffiffiffi
n1n2
n1 +n2

q
x2 − x1

s

s2 =
PP

ðxi,j − xj Þ2
n1 +n2 − 2 δ= s

ffiffiffiffiffiffiffiffiffiffi
2mγpν
n1n2

q �
ν+t2

ν+½t − ffiffiffiffiffi
νγp

p �2
�m

t >
ffiffiffiffiffiffiffi
νγp

p
γ =

�
t2α
ν+1

�m

ν=n1 +n2 −2

γp = γ2=ðn1+n2−1Þ − 1

m= ðn1 +n2Þ=2

χ21 x λ1 = arg min
λ

log


a+

ffiffiffiffiffiffiffiffiffi
a2 − 1

p �
ffiffi
λ

p exp


−λ1

2

�
cosh


 ffiffiffiffiffiffiffi
λ1x

p �

a= γeλ=2

Proportion ðx,nÞ p1 = arg min
p

logðγÞ−nΔðp,p0Þ
logitðpÞ− logitðp0Þ

�
p1
p0

�x�
1−p1
1−p0

�n−x

p0 Δðp,p0Þ= log
�

1−p
1−p0

�

Note that the Bayes factors listed for the one- and two-sample t tests should only be used for t <
ffiffiffiffiffiffiffi
νγp

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νγp + 4ν

p
. Values for quantities in empty cells must

be determined using numerical techniques.
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