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Abstract

Threats to the validity of observational studies on the effects of interventions
raise questions about the appropriate role of such studies in decision making.
Nonetheless, scholarly journals in fields such as medicine, education, and the
social sciences feature many such studies, often with limited exploration of
these threats, and the lay press is rife with news stories based on these studies.
Consumers of these studies rely on the expertise of the study authors to
conduct appropriate analyses, and on the thoroughness of the scientific peer-
review process to check the validity, but the introspective and ad hoc nature
of the design of these analyses appears to elude any meaningful objective
assessment of their performance. Here, we review some of the challenges
encountered in observational studies and review an alternative, data-driven
approach to observational study design, execution, and analysis. Although
much work remains, we believe this research direction shows promise.
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1. INTRODUCTION

Consider the following article that recently appeared in the New England Journal of Medicine
concerning the drug azithromycin and the risk of cardiovascular death (Ray et al. 2012). The paper
concludes that, relative to an alternative antibiotic, amoxicillin, “azithromycin was associated with
an increased risk of cardiovascular death (hazard ratio, 2.49; 95% CI, 1.38 to 4.50; P = 0.002)”
(p. 1881). The authors conducted their study in a database derived from patients enrolled in the
Tennessee Medicaid program, identifying 347,795 people with prescriptions for azithromycin and
1,248,672 people with prescriptions for amoxicillin.

Patients, providers, payers, and regulators rely on hundreds or even thousands of observational
studies like this to make critical decisions. Nearly 80,000 observational studies were published in
the decade 1990–2000 (Naik 2012). In the following decade, the number of studies grew to more
than 260,000. Because Ray et al.’s (2012) study was not a randomized clinical trial, two challenges
arise. First, the estimated rate ratio may be biased, which is a concern about all observational
studies and one that commands most of the discussion section of each paper. That is, this type of
analysis could systematically produce rate ratio estimates that are on average too high or too low.
Second, the confidence interval might be badly calibrated. That is, the 95% confidence intervals
produced by this type of analysis might, for instance, contain the true treatment effect only 50% of
the time, instead of the expected 95%. For the example above, a debiased estimate may be 1.0 or 5.0
instead of 2.49. Perhaps the true 95% confidence interval should be 0.50–5.00 instead of 1.38–4.50.
What would have happened if different investigators had studied the same question in a different
database or applied a different analysis method to the same data? How is this information supposed
to contribute to our evidence base? The epidemiologic and statistical literatures acknowledge that
observational studies can produce biased and miscalibrated estimates but provide little guidance
on how to quantify the extent of the problem. One exception is the highly cited work of Ioannidis
(2005), but even this effort at quantification draws mainly on hypothetical scenarios rather than
empirical investigation.

This paper reviews the ongoing work of the Observational Medical Outcomes Partnership
(OMOP; http://omop.org) that attempts to shed light on some of these questions (Stang et al.
2010). Our work to date has focused on four primary objectives. First, we have attempted to
establish the operating characteristics of current standard observational study methods (Ryan
et al. 2012). Specifically, we have characterized bias, coverage of confidence intervals, and ability
to discriminate between positive and negative controls for thousands of implementations of epi-
demiologic designs across 10 databases for hundreds of drug-outcome pairs. We have collaborated
with investigators in a network of European databases who have conducted similar methodological
research and have replicated the OMOP experiment (Schuemie et al. 2012). Our results suggest
that bias is a significant problem in many contexts, and that statistical measurements, such as confi-
dence intervals and p-values, are substantially invalid, empirically confirming Ioannidis’s findings.
Second, we have documented the substantial variability that results when identical analyses are
conducted against different databases or when specific decisions within an analysis, such as time
at risk or confounding adjustment strategy, are modified. Third, we have developed data-driven
approaches to remove bias and provide confidence intervals and p-values with close to nominal
operating characteristics (e.g., 95% confidence intervals that contain the true effect size 95% of
the time). Fourth, we have developed an approach to observational study design that yields known
operating characteristics.

We view our work as taking early steps toward a rigorous, well-characterized, evidence-based
approach to estimating effects in observational studies. Much work remains to be done. We believe
the use of observational healthcare data could be transformed from episodic investigations based on
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presumed expert opinion and anecdote into a comprehensive system that can proactively explore,
monitor, and evaluate human disease, health service utilization, and the effects of all medical
products across a large array of health outcomes of interest (HOI), in/near real time.

Our work to date focuses specifically on drug safety, an issue of particular current con-
cern. The US Food and Drug Administration (FDA) Amendments Act of 2007 required the
establishment of an active postmarket risk identification and analysis system with access to
patient-level observational data from 100 million lives by 2012 (http://www.fda.gov/Safety/
FDAsSentinelInitiative/default.htm). However, we believe our work is applicable to the many
other applications of observational studies to estimate the effects of interventions, including the
emerging interest in comparative effectiveness research.

Section 2 reviews the literature to highlight challenges in observational data analysis. Section 3
reviews the results of a subset of OMOP experiments that consider method performance for four
specific outcomes in five large-scale observational databases. Section 4 describes an approach to
calibrating the statistical outputs of an observational study. Specifically, we describe an approach
for calculating calibrated p-values that provide desired false positive rates. Section 5 sets forth
a recipe for observational studies that delivers known performance characteristics. We conclude
with a discussion.

2. CHALLENGES IN OBSERVATIONAL ANALYSIS

Prior to regulatory approval, while a drug is in development, randomized clinical trials represent
the primary sources of safety information. Such experiments are generally regarded as the highest
level of evidence, leading to an unbiased estimate of the average treatment effect (Atkins et al.
2004). Unfortunately, most trials suffer from insufficient sample size and lack of applicability to
reliably estimate the risk of many potential safety concerns for the target population (Berlin et al.
2008, Waller & Evans 2003). Even if one leverages meta-analytic tools, rare side effects, long-
term outcomes (both positive and negative), and effects in patients with comorbidities may still
be unknown when a product is approved because of the relatively small size and short duration
of clinical trials. For products intended to treat chronic, non-life-threatening conditions that
occur in large populations, the International Conference for Harmonisation (Azoulay et al. 2012)
recommends a baseline safety database that involves at least 1,500 patients on average with at least
a 6-month exposure time to reliably (i.e., 95% of the time) identify events happening at the 1%
level (US Food Drug Admin. 1999). In other words, events that occur less frequently than 1 in
100 patients are not expected to be detected under this recommendation.

Observational studies represent an alternative approach to evaluating drug safety questions
and can give us the necessary information about drug effects to support clinical decision making.
Observational studies provide empirical investigations of exposures and their effects, but differ
from experiments in that assignment of treatment to subjects is not controlled (Rosenbaum 2002).
Observational studies can be based on many forms of epidemiologic investigation, using a variety of
methods for data collection, applying alternative study designs, and employing a range of analysis
strategies (Hartzema et al. 1999, 2008; Jewell 2004; Rothman 2002; Rothman et al. 2008; Szklo
& Nieto 2007). These studies can range from population-based cohort studies with prospective
data collection to targeted disease registries to retrospective case-control studies.

One type of resource that has provided fertile ground for epidemiologic investigation has been
observational healthcare databases. Administrative claims and electronic health record (EHR)
databases have been actively used in pharmacoepidemiology for more than 30 years (Strom 2005)
but have seen increased use in the past decade owing to greater availability at lower costs and
technological advances that made computational processing on large-scale data more feasible.
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Many such databases contain large numbers of patients that make possible the examination of
rare events and specific subpopulations that previously could not be studied with sufficient power
(Rockhill et al. 1998, Rodriguez et al. 2001). Because the data reflect healthcare activity within
a real-world population, they offer the potential to complement clinical trial results. Long-term
longitudinal capture of data in these sources can also enable studies that monitor the performance
of risk management programs or other interventions over time (Weatherby et al. 2002).

Administrative claims databases have been the most actively used observational healthcare
data source. These databases typically capture data elements used within the reimbursement
process, as providers of healthcare services (e.g., physicians, pharmacies, hospitals, and labora-
tories) must submit encounter information to enable payment for their services (Hennessy 2006).
The submitted information commonly includes pharmacy claims for dispensing of prescription
drugs (e.g., the drug dispensed, the dispensing date, and the number of days of drug supply) and
medical claims (inpatient and outpatient) that detail the dates and types of services rendered.
Medical claims typically contain diagnosis codes used to justify reimbursement for the services
provided. Information on over-the-counter drug use and in-hospital medication is usually unavail-
able, and the patient’s compliance with the prescription is generally unknown (Suissa & Garbe
2007).

EHRs generally contain data captured at the point of care, with the intention of supporting
the process of clinical care as well as justifying reimbursement and providing data for quality mea-
surement. A patient record may include demographics (birth date, gender, and race), height and
weight, and family and medical history. Many EHR systems support provider entry of diagnoses,
signs, and symptoms and also capture other clinical observations, such as vital signs, laboratory
results, and imaging reports. Beyond those, EHRs may often contain findings of physical exami-
nations and the results of diagnostic tests (Schneeweiss & Avorn 2005). EHR systems usually also
have the capability to record other important health status indications, such as alcohol use and
smoking status (Lewis & Brensinger 2004), but the data may be missing in many patient records
(Hennessy 2006). As a result of discontinuous care within the US healthcare system, a patient may
have multiple EHRs scattered across the providers the individual has seen, but rarely are those
records integrated, nor can they usually be linked, so each EHR record reflects a different and
incomplete perspective of that person’s healthcare experience. Recent efforts to advance health
information exchange aim to reduce this fragmentation.

Neither administrative claims nor EHRs represent the ideal information required to assess a
particular effect. For example, diagnoses recorded on medical claims are used to support justifica-
tion for the payment for a given visit or procedure; a given diagnosis could represent the condition
that the procedure was used to rule out or could be an administrative artifact (e.g., the code used
by a medical coder to maximize the reimbursement amount). Some diagnosis codes have been
studied through source record verification and have demonstrated adequate performance charac-
teristics (Donahue et al. 1997, Garcı́a Rodrı́guez & Pérez Gutthann 1998, Hennessy et al. 2009,
Lee et al. 2005, Miller et al. 2008, Pladevall et al. 1996, So et al. 2006, Tunstall-Pedoe 1997,
Varas-Lorenzo et al. 2008, Wahl et al. 2010, Wilchesky et al. 2004), whereas other conditions and
systems provide less certainty (Harrold et al. 2007, Leonard et al. 2008, Lewis et al. 2007, Strom
2001). Limitations exist in EHR systems as well, in which, apart from concerns about incomplete
capture, data may be artificially manipulated to serve clinical care (e.g., an incorrect diagnosis
recorded to justify a desired medical procedure). Most systems have insufficient processes to eval-
uate data quality a priori, requiring intensive work on the part of the researcher to prepare the data
for analysis (Hennessy et al. 2007). To estimate potential drug exposures, for example, researchers
can make inferences in administrative claims sources based on pharmacy dispensing records,
whereas inferences for EHR systems rely on patient self-report and physician prescribing orders
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(Hennessy 2006). Neither approach reflects the timing, dose, or duration of drug ingested, so
assumptions are required in interpretation of all study results.

The principal concern for all observational studies, which is of particular relevance in observa-
tional database evaluation, is the potential for bias. Schneeweiss & Avorn (2005) illustrated some
of the potential sources of bias that are introduced throughout the data capture process for both
administrative claims and EHRs. An observational study is biased if the treated and control groups
differ prior to treatment in ways that can influence the outcome under study (Rosenbaum 2002).
Several forms of bias can arise in the design and conduct of an observational study. In the context
of drug safety analyses, one of the most challenging issues is confounding by indication, i.e., a
situation in which the indication for the medical product is also an independent risk factor for the
outcome (Walker 1996). Therefore, a medical product can spuriously appear to be associated with
the outcome when no appropriate control for the underlying condition exists, and confounding
may persist despite advanced methods for adjustment (Bosco et al. 2010). For example, proton
pump inhibitors might produce an apparent increase in risk of gastrointestinal bleeding. This ap-
parent increase could arise because that class of drugs is used to treat symptoms that might also be
indicative of such bleeding. A predisposition for healthcare utilization can also produce confound-
ing, perhaps because of functional status, or of access due to proximity, economic, and institutional
factors (Brookhart et al. 2010b). An additional concern is immortal time bias, whereby outcomes
are not observable within the defined time at risk (Rothman & Suissa 2008; Suissa 2007, 2008).

Several strategies exist for reducing the effects of bias within observational database studies.
These include design-level considerations and analysis approaches. Multiple study design ap-
proaches have been proposed for observational investigations, including cohort, case control,
and self-controlled case series (SCCS), each with its own approach to address confounding. Self-
controlled designs aim to address the threat of between-person confounding by comparing exposed
and unexposed time at the individual level (Whitaker et al. 2006). Confounders (e.g., sex) that do
not change over time within a person are inherently controlled in such designs. Cohort designs
compare outcome rates across populations, so they must control confounding by measuring and
adjusting for confounding factors that vary among patients. Some believe each design may have
potential applications for examining specific types of associations based on the attributes of the
exposure and outcome (e.g., certain designs are presumed to be appropriate for short-term effects)
(Gagne et al. 2012).

Cohort studies, perhaps the most commonly used design, allow many possible approaches
to address confounding. One design strategy is to impose restrictions on the selected sample to
increase validity, potentially at the expense of precision. These restrictions are quite analogous to
those employed in clinical trials and include ensuring that only incident drug users are studied;
the restrictions also ensure similar comparison groups, patients without contraindications, and
comparable adherence, as demonstrated by Schneeweiss et al. (2007), who showed how bias was
reduced at each stage of restriction using statin and 1-year mortality as an example.

The restriction to incident users deserves special attention, as implementation of a new-user
design can eliminate prevalent user bias (Cadarette et al. 2009, Ray 2003, Schneeweiss 2010).
Within a new-user design framework, measures of association focus on events occurring after
the first initiation of treatment, thus allowing a more direct comparison with an analogous group
using an alternative treatment. The design can be logically extended to study drug switching and
add-on therapies, as long as incident use of the target drug is preserved (Schneeweiss 2010).

Comparator selection is also an important design consideration to reduce confounding by
indication. The comparator definition should ideally yield patients in the same health circumstance
as those eligible to be new users of the target medication. Frequently, when assessing a drug safety
issue, the comparator is chosen to represent the standard of care that would have been provided to
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that patient had the person not been prescribed the target drug, such that relative effect estimates
represent risk above and beyond what the patient could otherwise expect. However, a comparator
may also be selected specifically to address a question about difference in risk stemming from
the underlying biological mechanism (for example, choosing a comparator drug with the same
indication). A challenge in comparator selection arises either when no standard of care exists or
when significant channeling bias to a particular drug class is present. For example, this bias might
occur when a particular class of drugs is reserved for the most severely ill patients, who might be
at increased risk for an adverse event because of the increased severity of disease. In this regard,
evaluation studies can be highly sensitive to the comparator selected, and a criticism of these
studies is often the subjective nature by which the comparator was selected.

Once a design is established, researchers can further reduce bias through analysis strategies,
such as matching, stratification, and statistical adjustment. Variables commonly considered for
adjustment are those for which the distribution at baseline differs between the exposed and un-
exposed populations, or those known to potentially influence treatment decisions. To produce
confounding, these variables also need to be associated with outcome occurrence; they may in-
clude patient demographics (such as age, gender, and race) or patient comorbidities (expressed
either as a set of binary classifiers of specific diseases or as a composite index of comorbidity).
One commonly used measure is the Charlson index (Bravo et al. 2002; Charlson et al. 1987, 1994;
Cleves et al. 1997; D’Hoore et al. 1993, 1996; Li et al. 2008; Needham et al. 2005; Quan et al.
2005; Southern et al. 2004; Zhang et al. 1999), which was originally developed to predict mortality
but has also been shown to be related to healthcare expenditures (Farley et al. 2006). Adjustment
for a comorbidity index is useful for exploratory data analysis (Schneeweiss et al. 2001) but may
not suffice to address all sources of confounding. Additional variables often cited include prior use
of medications and markers for health service utilization, such as number of outpatient visits and
inpatient stays. The specific definitions and applications of covariates are highly variable across
drug safety evaluation studies. Covariate selection can influence the magnitude of effect measures,
regardless of the modeling approach undertaken, particularly if effect modification exists (Lunt
et al. 2009).

Once variables are identified, one can control for them through direct matching or stratification,
whereby the target and comparator groups are logically divided by the attributes of the covariates.
However, in a multivariable context, the data may be too sparse to provide adequate sample size
to allow matching on all covariates or to provide subpopulations within each covariate-defined
stratum (i.e., there may be empty cells defined by combinations of covariates). A popular tool to
overcome this limitation is propensity score analysis (Rosenbaum 2002, Rubin 1997).

As with other approaches, the propensity score model is only as good as the covariates se-
lected to provide the adjustment. A propensity score is a single metric that is intended to account
for all of the explanatory variables that predict who will receive treatment. Propensity scores
generally balance observed confounders but do not necessarily produce balance on factors not
incorporated into the model. Such imbalances represent a particular problem for the analysis
of databases in which many important covariates, such as smoking status, alcohol consumption,
body mass index, and lifestyle and cultural attitudes regarding health, are not captured. Sturmer
et al. (2007) demonstrated that further adjustment could be achieved by conducting supplemen-
tal validation studies to collect additional information on previously unmeasured confounders.
Schneeweiss et al. (2005) showed how unmeasured confounders biased estimates of COX-2 in-
hibitors and myocardial infarction. Seeger et al. (2003, 2005, 2007) highlighted how a model
without the appropriate variables included could yield a biased estimate in a case study that ex-
plored association of statin therapy and myocardial infarction. Strategies for automated selection
of large sets of covariates have been proposed as potential solutions to reduce the possibility of

16 Madigan et al.

A
nn

ua
l R

ev
ie

w
 o

f 
St

at
is

tic
s 

an
d 

It
s 

A
pp

lic
at

io
n 

20
14

.1
:1

1-
39

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 2
.9

6.
25

1.
97

 o
n 

03
/1

6/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ST01CH02-Madigan ARI 29 November 2013 13:51

missing an empiric confounder (Schneeweiss et al. 2009). Sensitivity analysis has been pro-
posed as an additional approach to assess the potential consequences of unobserved confound-
ing (Schneeweiss 2006) but is unfortunately rarely reported in published studies. For example,
Rosenbaum (2002) posits the existence of a latent confounder and explores the magnitude of the
confounding that would be required to explain away the observed effect.

Instrumental variable (IV) analysis presents another potential solution to adjusting for con-
founding through control of a factor that is related to exposure but unrelated to outcome
(Brookhart et al. 2010a, Hogan & Lancaster 2004, Schneeweiss 2007). Several studies have shown
how IV analysis can reduce bias (Dudl et al. 2009; Rassen et al. 2009, 2010; Schneeweiss et al.
2008). A challenge in IV analysis is identifying a covariate that satisfies the criteria of an IV, par-
ticularly with regard to having no association with the outcome. For active surveillance, in which
one may explore multiple outcomes for a given exposure, the selection of a common IV becomes
even harder.

One consideration for all statistical adjustment techniques in drug safety evaluation studies is the
danger of the statistical adjustment itself introducing bias. Statistical control can sometimes either
increase bias or decrease precision without affecting bias and can thereby produce less reliable effect
estimates (Schisterman et al. 2009). For example, bias can also be induced if an analysis improperly
stratifies on a collider variable (Cole et al. 2010), that is, a variable that is itself directly influenced by
two other variables. As a result, care is necessary in any evaluation study to develop a parsimonious
model that achieves an appropriate balance between bias and variance. Although researchers have
made substantial progress to establish theoretical and conceptual arguments for design and analysis
considerations in observational data analysis, very little empirical evidence exists to support best
practice and determine how observational analyses should be properly interpreted when evaluating
the potential effects of medical products.

3. EVALUATING THE PERFORMANCE OF METHODS:
THE OBSERVATIONAL MEDICAL OUTCOMES
PARTNERSHIP EXPERIMENT

We have conducted a large-scale observational data experiment that seeks to empirically establish
the operating characteristics of many standard epidemiologic methods. Specifically, we created a
reference set of 399 product-outcome pairs, each classified as either a positive control (i.e., the
product increases the risk of the outcome) or a negative control (i.e., the product neither increases
nor decreases the risk of the outcome) (Ryan et al. 2013). Across five databases, we assess how well
hundreds of different analytic methods can (a) discriminate between the positive controls and the
negative controls and (b) estimate the true relative risk for the negative controls.

3.1. Data and Test Cases

The five databases included in the work presented here are from Truven Health Analytics (for-
merly the health business of Thomson Reuters), specifically, from MarketScan R© Lab Supplement
(MSLR; 1.2 million people), Medicare Supplemental Beneficiaries (MDCR; 4.6 million peo-
ple), Multi-State Medicaid (MDCD; 10.8 million people), Commercial Claims and Encounters
(CCAE; 46.5 million people), and the Quintiles Practice Research Database (GE Centricity EHR;
11.2 million people). Quintiles is an EHR database, whereas the other four databases contain ad-
ministrative claims data. Table 1 provides further details about each of the databases. All databases
were transformed into a common data model using a standardized vocabulary, such that analyses
could be consistently applied across the different sources (Overhage et al. 2012).
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We created a large series of positive and negative controls, known drug-outcome associa-
tions for four HOI: acute kidney injury, acute liver injury, acute myocardial infarction, and
upper gastrointestinal bleeding [definitions are described in Hansen (2013) and available at
http://omop.org/HOI]. These HOI represent four of the most important drug safety outcomes
considered for a risk identification system (Trifirò et al. 2009). Their importance lies in their
frequency of occurrence, in their clinical impact, or in both. For each of these outcomes, drug-
outcome pairs (Ryan et al. 2013) were classified as positive controls (active ingredients with evi-
dence to suspect a positive association with the outcome) or negative controls (active ingredients
with no evidence to expect a causal effect with the outcome) based on the following criteria.

Positive Controls:
� The event is listed in the boxed warning or warnings/precautions section of an active FDA

Structured Product Label.
� The drug is listed as a “causative agent” in Tisdale & Miller (2010).
� The literature review identified no adequately powered studies that refuted evidence of

effect.

Negative Controls:
� The event is not listed anywhere in any section of an active FDA Structured Product Label.
� The drug not listed as a causative agent in Tisdale & Miller (2010).
� The literature review identified no adequately powered studies with evidence of potential

positive association.

The test cases include 165 positive controls and 234 negative controls (Ryan et al. 2013). The
article describes the full set of test cases and provides a more detailed description of the manner
in which we constructed the set. Note that for the positive controls, we have not attempted to
characterize the true effect size, other than hypothesizing that this effect is positive.

3.2. Methods Evaluated

We sought to establish the operating characteristics of seven methods [new-user cohort, case
control, SCCS, self-controlled cohort (SCC) (observational screening), disproportionality analysis
(DP), information component temporal pattern discovery (ICTPD), and longitudinal gamma
Poisson shrinker (LGPS)]. Table 2 provides a description of each method, as well as the specific
implementation choices considered within each method. We believe these methods include all
commonly used approaches in observational studies of healthcare.

For each analytic method and combination of analytic design choices, we generated esti-
mated relative risks and associated standard errors for all 399 drug-outcome test cases. The
estimates and associated standard errors for all of the analyses are available for download at
http://omop.org/Research. For every database, we considered only those drug-outcome pairs
with sufficient power to detect a hypothetical relative risk of 1.25, based on the age-by-gender-
stratified drug and outcome prevalence estimates (i.e., the power calculations were based on
marginal distributions, not on observed associations).

3.3. Metrics

To gain insight into the ability of a method to distinguish between positive and negative controls,
we used the effect estimates to compute the area under the receiver operating characteristic curve
(AUC) (Fawcett 2006), a measure of predictive accuracy: An AUC of 1 indicates a perfect prediction
of which test cases are positive and which are not. An AUC of 0.5 is equivalent to random guessing.
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Table 2 Methods and design choices used in the experiment

Method Method description
Analytic design choices (optimal setting for MDCR–acute myocardial

infarction in italics)
Self-controlled
cohort (SCC) as
implemented
in the
observational
screening
package

This is an extension of a
traditional cohort
epidemiology design in which
the rate of adverse drug
events can be compared
across groups of patients
exposed to different
medications, allowing
comparisons within a cohort
population, between
treatments, as well as relative
to the overall population at
large.

Exposures to include: all occurrences, first occurrence
Outcomes to include: first occurrence, all occurrences
Time at risk: length of exposure + 30 days, 30 days from exposure start, all
time post–exposure start

Include index date in time at risk: no, yes
Control period: length of exposure + 30 days, 30 days prior to exposure
start, 180 days prior to exposure start, 365 days prior to exposure start, all
time prior to exposure start

Include index date in control period: no, yes
Combinations to be tested: 126

Self-controlled
case series
(SCCS)

The method estimates the
association between a
transient exposure and
adverse event using only
cases; no separate controls are
required because each case
acts as its own control.

Outcomes to include: all occurrences, first occurrence
Prior distribution: normal, Laplace
Variance of the prior: determined through cross-validation, predefined at
0.01, predefined at 0.1, predefined at 1, predefined at 10

Time at risk: all time post–exposure start, length of exposure, length of
exposure + 30 days, 30 days from exposure start

Include index date in time at risk: yes, no
Apply multivariate adjustment on all drugs: no, yes
Required observation time: none, 180 days
Combinations to be tested: 560

Case control The program applies a
case-control surveillance
design to estimate odds ratios
for drug-condition effects, in
which cases are matched to
controls by age, sex, location,
and race.

Controls per case: up to 10 controls per case, up to 100 controls per case
Required observation time prior to outcome: 30 days, 180 days
Time at risk: length of exposure + 30 days, length of exposure, 30 days from
exposure start, all time post–exposure start

Include index date in time at risk: no, yes
Case-control matching strategy: age, sex, and visit (within 180 days); age,
sex, and visit (within 30 days); age and sex

Nesting within indicated population: no, yes
Exposures to include: first occurrence, all occurrences
Metric: odds ratio with Mantel-Haenszel adjustment by age and gender,
unadjusted odds ratio

Combinations to be tested: 384
Information
component
temporal
pattern
discovery
(ICTPD)

This is a novel method for
event history data, focusing
explicitly on the detailed
temporal relationship
between pairs of events. The
proposed measure contrasts
the observed-to-expected
ratio in a period of interest
with that in a predefined
control period.

Control period: −180 days to −1 day before exposure start, −1,080 days to
−361 days before exposure start, −30 days to −1 day before exposure start,
−810 days to −361 days before exposure start

Time at risk: 360 days from exposure start, 30 days from exposure start,
60 days from exposure start

Use control period in expected calculation: yes, no
Use 1 month prior to exposure in expected calculation: no, yes
Use 1 day prior to exposure in expected calculation: no, yes
Combinations to be tested: 42

(Continued )
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Table 2 (Continued )

Method Method description
Analytic design choices (optimal setting for MDCR–acute myocardial

infarction in italics)
New-user cohort This implementation of the

inception cohort design
applies various approaches
for propensity score
adjustment to balance
baseline covariates and
model to estimate
drug-related effects.

Required observation time prior to exposure: 180 days, none
Nesting within indicated population: no, yes
Comparator population: patients with a diagnosis for the indication of the
target drug and at least one exposure to a drug known to be unassociated with
the outcome; patients with exposure to most prevalent comparator drug that
shares the same indication as the target drug but is not in the same
pharmacologic class; patients with exposure to any comparator drug that shares
the same indication as the target drug but is not in the same pharmacologic
class; patients with a diagnosis for the indication of the target drug

Time at risk: length of exposure + 30 days, 30 days from exposure start, all time
post–exposure start

Propensity score covariate-selection strategy: Bayesian logistic regression
using all available covariates, high-dimensional propensity score
covariate-selection algorithm by Schneeweiss et al. (2009), exposure-specific
covariate-selection algorithm identified by Brookhart et al. (2006), no covariate
adjustment

Covariate eligibility window: 180 days prior to exposure, 30 days prior to
exposure, all time prior to exposure, none

Dimensions to include as potential covariates: drugs, conditions, and
procedures; drugs only; drugs and conditions; none

Additional covariates to include in the propensity score model: age, sex,
index year, Charlson index, number of drugs, number of visits, and number of
procedures; age and sex; none

Covariate-selection algorithm additional parameters: BLR: normal prior
distribution with variance = 1, Laplace prior distribution with variance = 1;
High-dimensional propensity scoring (HDPS): 100 top confounders from
among 200 most prevalent covariates in each dimension that occur in at least
100 persons, 500 top confounders from among 500 most prevalent covariates in
each dimension that occur in at least 100 persons

Propensity score trimming: none, trim lower 5% from the comparator group
and the upper 5% from the target group

Metric: propensity score adjustment using propensity score as continuous
variable in logistic regression outcome model, propensity score adjustment
using 5 strata as indicator variables in logistic regression outcome model,
propensity score adjustment using 20 strata as indicator variables in logistic
regression outcome model, propensity score stratification using
Mantel-Haenszel adjustment over 5 strata, propensity score stratification using
Mantel-Haenszel adjustment over 20 strata, unadjusted odds ratio from
univariate logistic regression predicting outcome from exposure

Combinations to be tested: 126
(Continued )
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Table 2 (Continued )

Method Method description
Analytic design choices (optimal setting for MDCR–acute myocardial

infarction in italics)
Disproportionality
analysis (DP)

Methods adapted from data
mining of spontaneous
adverse event reports, in
which drug-condition
pairs are identified if they
co-occur
disproportionately more
frequently than would be
expected if the drug and
condition were
independent.

Outcomes to include: first occurrence, all occurrences
Strategy to stratify data: classify drug-outcome co-occurrences as
exposed/unexposed and with/without outcome

Metric: proportional reporting ratio (PRR), information component
(BCPNN/IC), multi-item gamma Poisson shrinker

Stratify by age: yes, no
Stratify by gender: yes, no
Stratify by year: no, yes
Time at risk: length of exposure + 30 days, length of exposure + 60 days, 30
days from exposure start, all time post–exposure start

Combinations to be tested: 48
Longitudinal
gamma Poisson
shrinker (LGPS)

LGPS applies Bayesian
shrinkage to an estimated
incidence rate ratio to
compare the exposed
population with the
general population, and
LEOPARD aims to detect
and discard associations
due to protopathic bias.

Metric: incidence rate ratio with Mantel-Haenszel adjustment over
age-by-gender strata, LGPS

Exposures to include: all occurrences, first occurrence
Time at risk: length of exposure, length of exposure + 30 days
Required observation time prior to exposure: 365 days, none
Apply LEOPARD filtering for protopathic bias: yes, no
Combinations to be tested: 32

Often not only are we interested in whether there is an effect, but also we would like to know
the magnitude of the effect. However, to evaluate the accuracy of the effect size estimates for
a particular analytic method, we must know the true effect size. This true effect size is never
known, so we restrict our analysis to the negative controls, for which we assume that the true
log relative risk is zero. Using the negative controls in real data, we compute bias, the average
difference between the observed log relative risk and zero. An unbiased estimator would yield a bias
of zero. The mean squared error (MSE) (Pladevall et al. 1996) is the average squared difference
between the log relative risk and zero. Because zero is the true log relative risk, smaller MSEs
are desirable. Coverage probability is the fraction of the 95% intervals that include zero. In the case
of an unbiased estimator with valid confidence interval estimation, we would expect the coverage
probability to be 95%.

3.4. Results of the Performance Evaluation Experiment

Table 3 presents the analytic method that provided the best AUC for each outcome-database com-
bination as well as the associated AUC value. Each six-digit code specifies a particular set of design
choices (for details, see the OMOP 2011-2012 Experiment Method Reference spreadsheet avail-
able at http://omop.org/Research). For every database-outcome combination, self-controlled
methods (SCC, SCCS, and ICTPD) provide the optimal performance, with AUCs ranging from a
low of 0.77 for acute liver injury in the MDCD database to 1.00 for acute kidney injury in the MSLR
database. In general, AUCs are highest for acute kidney injury and lowest for acute liver injury,
with acute myocardial infarction and gastrointestinal bleeding in between. Performance across the
five data sources is similar despite their substantial differences in patient populations (Table 1).
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Table 3 AUC (area under the receiver operating characteristic curve) optimal analytic method for each database and
outcome

Data
source Acute kidney injury Acute liver injury

Acute myocardial
infarction

Upper gastrointestinal
bleeding

MDCR OS: 401002 (0.92)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: length of
exposure + 30 days

Include index date in
control period: no

OS: 401002 (0.76)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: length of
exposure + 30 days

Include index date in
control period: no

OS: 407002 (0.84)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: first
occurrence

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: length of
exposure + 30 days

Include index date in
control period: no

OS: 402002 (0.86)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: yes

Control period: length of
exposure + 30 days

Include index date in
control period: yes

CCAE OS: 404002 (0.89)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: length of
exposure + 30 days

Include index date in
control period: yes

OS: 403002 (0.79)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: yes

Control period: length of
exposure + 30 days

Include index date in
control period: no

OS: 408013 (0.85)
Study design:
self-controlled cohort

Exposures to include: first
occurrence

Outcomes to include: first
occurrence after exposure

Time at risk: all time
post–exposure start

Include index date in time
at risk: no

Control period: all time
prior to exposure start

Include index date in
control period: no

SCCS: 1931010 (0.82)
Outcomes to include: all
occurrences

Prior distribution: normal
Variance of the prior:
determined through
cross-validation

Time at risk: all time
post–exposure start

Include index date in time
at risk: no

Apply multivariate
adjustment on all drugs:
no

Required observation time:
180 days

MDCD OS: 408013 (0.82)
Study design:
self-controlled cohort

Exposures to include: first
occurrence

Outcomes to include: first
occurrence after exposure

Time at risk: all time
post–exposure start

Include index date in time
at risk: no

Control period: all time
prior to exposure start

Include index date in
control period: no

OS: 409013 (0.77)
Study design:
self-controlled cohort

Exposures to include: first
occurrence

Outcomes to include: first
occurrence

Time at risk: all time
post–exposure start

Include index date in time
at risk: no

Control period: all time
prior to exposure start

Include index date in
control period: no

OS: 407004 (0.80)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: first
occurrence

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: 365 days
prior to exposure start

Include index date in
control period: no

OS: 401004 (0.87)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: 365 days
prior to exposure start

Include index date in
control period: no

(Continued )
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Table 3 (Continued )

Data
source Acute kidney injury Acute liver injury

Acute myocardial
infarction

Upper gastrointestinal
bleeding

MSLR SCCS: 1907010 (1.00)
Outcomes to include: all
occurrences

Prior distribution: normal
Variance of the prior:
determined through
cross-validation

Time at risk: all time
post–exposure start

Include index date in time
at risk: no

Apply multivariate
adjustment on all drugs:
yes

Required observation time:
none

OS: 406002 (0.84)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: first
occurrence after exposure

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: length of
exposure + 30 days

Include index date in
control period: no

OS: 403002 (0.80)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: yes

Control period: length of
exposure + 30 days

Include index date in
control period: no

OS: 403002 (0.83)
Study design:
self-controlled cohort

Exposures to include: all
occurrences

Outcomes to include: all
occurrences

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: yes

Control period: length of
exposure + 30 days

Include index date in
control period: no

GE SCCS: 1949010 (0.94)
Outcomes to include: all
occurrences

Prior distribution: normal
Variance of the prior:
determined through
cross-validation

Time at risk: 30 days from
exposure start

Include index date in time
at risk: yes

Apply multivariate
adjustment on all drugs:
yes

Required observation time:
180 days

OS: 409002 (0.77)
Study design:
self-controlled cohort

Exposures to include: first
occurrence

Outcomes to include: first
occurrence

Time at risk: length of
exposure + 30 days

Include index date in time
at risk: no

Control period: length of
exposure + 30 days

Include index date in
control period: no

ICTPD: 3016001 (0.89)
Control period: −1,080
days to −361 days before
exposure start

Time at risk: 60 days from
exposure start

Use control period in
expected calculation: yes

Use 1 month prior to
exposure in expected
calculation: yes

Use 1 day prior to
exposure in expected
calculation: no

ICTPD: 3034001 (0.89)
Control period: −810 days
to −361 days before
exposure start

Time at risk: 60 days from
exposure start

Use control period in
expected calculation: yes

Use 1 month prior to
exposure in expected
calculation: no

Use 1 day prior to
exposure in expected
calculation: yes

Abbreviations: CCAE, MarketScan Commercial Claims and Encounters; GE, GE Centricity; ICTPD, information component temporal pattern
discovery; MDCD, MarketScan Multi-State Medicaid; MDCR, MarketScan Medicare Supplemental Beneficiaries; MSLR, MarketScan Lab
Supplemental; OS, observational screening; SCCS, self-controlled case series.

Figure 1 presents the AUC value for all analytic methods, broken down by database and
method. Several findings emerge from Figure 1:

� The case-control method, LGPS, and DP consistently underperform other methods, often
yielding AUCs close to 0.5.

� Within each method, the specific design choices that correspond to the global optimum
generally perform well for all outcomes and databases. Consider, for example, the SCC
design; with the exception of acute myocardial infarction in MDCD, performance of the
database-outcome optimum design choices does not exceed the global optimum by more
than 0.10 in AUC.

� The design choices within each method affect performance significantly. For the majority
of drug-outcome-method triples, there are design choices that yield AUC values at or close
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Acute liver failure Acute myocardial infarction

Data source

AU
C

Method
CC

CM

DP

ICTPD

LGPS

SCC

SCCS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Acute renal failure

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Upper gastrointestinal bleeding

MSLR MDCD MDCR CCAE GE MSLR MDCD MDCR CCAE GE

Figure 1
Area under the receiver operating characteristic curve (AUC) values for all analytic methods, broken down by database and method.
The solid lines represent the AUCs for the set of design choices within each method that provided the best performance on average
across all outcomes and databases, a specific version of global optimum. Abbreviations: CC, case control; CCAE, MarketScan
Commercial Claims and Encounters; CM, cohort method; DP, disproportionality analysis; GE, GE Centricity; ICTPD, information
component temporal pattern discovery; LGPS, longitudinal gamma Poisson shrinker; MDCD, MarketScan Multi-State Medicaid;
MDCR, MarketScan Medicare Supplemental Beneficiaries; MSLR, MarketScan Lab Supplemental; SCC, self-controlled cohort;
SCCS, self-controlled case series.

to 0.5, despite the existence of design choices with quite high AUC values for the same
drug-outcome pair.

Table 4 considers bias, MSE, and 95% confidence interval coverage for database-outcome
optimal analytic methods. Because the true relative risks are unavailable for the positive controls,
the table just draws on the negative control test cases. Table 4 shows that, in our experiments, the
case-control, SCC, and LGPS methods generally yield positively biased effect estimates, whereas
the cohort method generally yields negatively biased estimates. The SCCS method yields estimates
that are close to unbiased. All three self-controlled methods produce smaller MSEs than the other
methods, with SCCS being especially close to zero. No method provides coverage probabilities that
are close to the nominal 95%. On average, coverage probabilities for the cohort, disproportionality,
ICTPD, LGPS, and SCC methods are all below 50%. Average coverage for the case-control
method is 63%, whereas for SCCS, the average coverage is 76%.

Figure 2 presents the point estimates for the negative controls across all analysis methods.
The positive bias of the case-control, SCC, and LGPS methods reveals itself, as does the negative
bias of the cohort method. The smaller MSE associated with SCCS is also apparent.
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3.5. Discussion of the Experimental Results

Although no method resulted in perfect discrimination, many methods were substantially better
than random guessing. Optimum AUCs ranging from 0.76 to 0.94 seem promising and are at least
as good as the predictive accuracy that is typically observed for diagnostic tests used in routine
clinical practice. These results suggest that observational data can play an important role in the
assessment of the effects of medical products, but no single analysis can provide definitive evidence.

Self-controlled designs (SCC, ICTPD, and SCCS) performed well across all 20 database-
outcome scenarios. They generally outperformed case-control and new-user cohort designs in
terms of predictive accuracy and did not exhibit notably different error distributions or bias.

All methods have poor coverage probability. This issue is related both to the bias in the point
estimate (the difference between the point estimate and the true effect) and to underestimation
of the standard error when generating the confidence intervals, and it may be systemic, plaguing
the entire enterprise of observational database analysis. Part of the problem is understandable:
Confidence intervals convey only error due to sampling variability around an unbiased estimator,
but these databases provide extremely large samples that result in modest sampling variability.
However, the true culprit in errant observational database studies is systematic error due to, for
example, residual confounding and misclassification, which are not accounted for in traditional
calculations. Furthermore, unlike sampling variability, systematic error does not diminish as sam-
ple size increases. The implication of this fact is that traditional statistical methods for controlling
bias, e.g., covariate adjustment or matching, are failing, in these examples, to correct for bias.

Our results suggest that performance improvements result from customizing analyses to
databases. Different databases represent different source populations and different data capture
processes, and thus some sources might be better at addressing specific questions. Each database
exhibits unique limitations that could affect performance. For example, owing to high turnover,
payer-based claims data may provide shorter longitudinal capture, whereas outpatient EHR sys-
tems may have more incomplete capture during the observation period.

We have not established the generalizability of these findings. That we see different analyses
yield the highest predictive accuracy for different database-outcome pairs suggests caution is nec-
essary when projecting these results to other databases or to other outcomes. Further experiments
are needed to determine the degree to which results can be generalized across outcomes. A pos-
sible direction is to conduct similar experiments for an additional 19 outcomes identified by the
Exploring and Understanding Adverse Drug Reactions project (http://www.euadr-project.org)
as high-priority safety issues (Trifirò et al. 2009).

Our analytic methods do not have access to the labels for the test cases, that is, whether a par-
ticular test case was a positive control or a negative control. Thus, our results are not optimistically
biased in the sense they would be in a machine learning experiment that reported performance
on training data. However, our results pertain to the specific 399 test cases that we studied, and
generalizing to future test cases requires, at the very least, an exchangeability assumption that may
or may not be reasonable.

4. CALIBRATING RESULTS

The experimental results in Section 2 demonstrate the possibility that typical observational studies
may not account for all sources of bias leading to, for example, confidence intervals with poor
coverage properties. Similarly, p-values from observational studies may mislead. For example,
hypothesis tests with a nominal 5% α level may yield false positive rates that substantially depart
from 5%. In this section, we explore this issue and present empirically calibrated p-values that
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may support more appropriate inferences and decisions. The core idea is to derive an empirical
null distribution using the negative control test cases described in Section 4.1.

4.1. Empirical Null Distributions

To demonstrate the empirical calibration, we selected three drug safety study exemplars from the
literature representing a case-control, a cohort, and an SCCS design. We attempted to replicate
these studies as best as we could but used databases different from those used in the original
articles. The cohort study investigated the relationship between isoniazid and acute liver injury,
whereas the case-control and SCCS studies investigated the association between sertraline and
upper gastrointestinal bleeding. Our replications produced very similar effect estimates, each
falling within the 95% confidence interval reported in the original article.

Next, we applied the same three designs to sets of negative controls: drugs that are not believed
to cause the outcome of interest. Figure 3 shows the estimated odds ratios and incidence rate
ratios, together with associated 95% confidence intervals. As is evident in Figure 3, traditional
significance testing fails to capture the diversity in estimates that exists when the null hypothesis
is true. Although all the featured drug-outcome pairs are negative controls (i.e., assumed to have
a true odds ratio or rate ratio of 1), a large fraction of the null hypotheses are rejected. We would
expect only 5% of negative controls to have p < 0.05. However, in Figure 3a (cohort method),
17 of the 30 negative controls (57%) are either significantly protective or significantly harmful.
In Figure 3b (case-control method), 33 of 46 negative controls (72%) are significantly harmful.
Similarly, in Figure 3c (SCCS method), 33 of 45 negative controls (73%) are significantly
harmful, although not the same 33 as in Figure 3b.

These numbers cast doubts on any observational study that would claim statistical significance.
Consider, for example, the odds ratio of 2.4 that we found for sertraline using the case-control
method; we see in Figure 3b that many of the negative controls have similar or even higher odds
ratios. The estimate for sertraline was highly significant ( p < 0.001), meaning the null hypothesis
can be rejected based on the usual theoretical model, i.e., assuming a null distribution centered at
a relative rate of 1.0. However, based on the empirical distribution of negative controls, we can
argue that we should not reject the null hypothesis so readily.

4.2. Calibration

Using the empirical distributions of negative controls, we can compute a better estimate of the
probability that a value at least as extreme as a certain effect estimate could have been observed
under the null hypothesis (Schuemie et al. 2013).

Figure 4 shows the fraction of negative controls for which the p-value is below α for every level
of α, for both the traditional p-value calculation and the calibrated p-value using the empirically
established null distribution. For the calibrated p-value, a leave-one-out design was used: For each

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
Point estimates for the negative controls across all analysis methods. Red dots indicate estimates for which the corresponding 95%
confidence interval does not include one, whereas blue dots indicate estimates for which the corresponding 95% confidence interval
includes zero (i.e., a relative risk of one on the original scale; in an ideal situation, with unbiased estimators, 95% of all dots should
blue). Abbreviations: CC, case control; CCAE, MarketScan Commercial Claims and Encounters; CM, cohort method; DP,
disproportionality analysis; GE, GE Centricity; ICTPD, information component temporal pattern discovery; LGPS, longitudinal
gamma Poisson shrinker; MDCD, MarketScan Multi-State Medicaid; MDCR, MarketScan Medicare Supplemental Beneficiaries;
MSLR, MarketScan Lab Supplemental; SCC, self-controlled cohort; SCCS, self-controlled case series.
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Figure 4
Calibration plots, showing the fraction of negative controls with p < α for different levels of α. Both traditional p-value calculation
(dashed lines) and p-values using calibration (solid lines) are shown. For the calibrated p-value, a leave-one-out design was used.
Abbreviations: GE, GE Centricity; MDCR, MarketScan Medicare Supplemental Beneficiaries; SCCS, self-controlled case series.

negative control, the null distribution was estimated using all other negative controls. A well-
calibrated p-value calculation should follow the diagonal: For negative controls, the proportion
of estimates with p < α should be approximately equal to α. Most significance testing uses an α

of 0.05, and we see in Figure 4 that the calibrated p-value leads to the desired level of rejection of
the null hypothesis. For the cohort, case-control, and SCCS methods, the number of significant
negative controls after calibration is 2 of 34 (6%), 5 of 46 (11%), and 3 of 46 (5%), respectively.

Applying the calibration to our three example studies, we find that only the cohort study of
isoniazid reaches statistical significance ( p = 0.01). The case-control and SCCS analyses produced
p-values of 0.71 and 0.84, respectively. Note that the calibration process could theoretically result
in a larger p-value although we have not seen this happen in practice.

4.3. Visualization of the Calibration

Figure 5 shows a graphical representation of the calibration. By plotting the effect estimate on
the x-axis and the standard error of the estimate on the y-axis, we can visualize the area where
the traditional p-value is smaller than 0.05 (the gray area below the dashed line) and where the
calibrated p-value is smaller than 0.05 (orange area). Many of the negative controls fall within the
gray area, indicating a traditional p < 0.05, but only a few fall within the orange area, indicating a
calibrated p < 0.05.

In Figure 5a, the drug of interest, isoniazid, is clearly separated from the negative controls, and
this separation is the reason why we feel confident we can reject the null hypothesis of no effect.
In Figure 5b,c, the drug of interest, sertraline, is indistinguishable from the negative controls.
These studies provide little evidence for rejecting the null hypothesis.

5. A RECIPE FOR OBSERVATIONAL STUDIES

Current strategies for the design of observational studies rely heavily on the expertise of analysts.
A process of expert consideration, introspection, anecdote, and discussion leads to a particular
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Figure 5
Traditional and calibrated significance testing. Estimates below the dashed line ( gray area) have p < 0.05 using traditional p-value
calculation. Estimates in the orange areas have p < 0.05 using the calibrated p-value calculation. In each panel, blue dots indicate
negative controls, whereas the yellow diamond indicates the particular drug of interest: (a) isoniazid and (b,c) sertraline. Abbreviations:
GE, GE Centricity; MDCR, MarketScan Medicare Supplemental Beneficiaries; SCCS, self-controlled case series.

design. The consumer of the resulting analysis must rely on the professional experience and
reputation of the analyst to assess the weight of evidence to attach to the study. Because little
empirical evidence exists to support this process, the subjective assessment of new results, along
with prior beliefs about the reliability of observational studies, dominates the interpretation of
observational findings in current practice.

Our work suggests an alternative path that provides a data-driven approach to study design.
We found that all methods have error, and the magnitude/direction of error varies by analysis and
database. Although some analyses carried substantial information, with AUC > 0.80, considerable
bias and large MSE existed, with p-values and confidence intervals far from nominal operating
characteristics. Future work can lead to improvements in methods that may have better perfor-
mance, but our findings suggest that empirical evidence will be required to justify interpreting
observational analyses properly. However, we also found that the empirical evidence generated can
be used to improve the operating characteristics through calibration. Suppose an analyst wishes
to study the association between intervention I and outcome O in observational database D. We
tentatively recommend proceeding as follows:

1. Develop a set of test cases for O. That is, identify a set of positive control interventions that
are known to be associated with O and a set of negative control interventions that are known
to be unassociated with O.

2. Run every possible study design in D to generate design-specific estimates and standard
errors for all test cases.

3. Choose the study design that optimizes some desired combination of AUC, MSE, bias, and
coverage.

4. Report calibrated p-values (and, in due course, calibrated confidence intervals) for the optimal
design along with the performance characteristics associated with the design, as computed
in step 3.

5. As a sensitivity exploration, report calibrated confidence intervals and p-values for the other
high-performing designs along with their performance characteristics.

Whether such an approach yields better results than the current expert-centric strategy remains
unknown. A key limitation of our recipe is that it is specific to the database and to the outcome
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only. Future work will consider extensions that also account for characteristics of the target
drug.

6. DISCUSSION

We have demonstrated the empirical performance of various analytic methods for observa-
tional studies across a range of database-outcome combinations. The ability of an analytic
method to discriminate between positive and negative test cases, rather than the more traditional
subjective judgment of an expert analyst, dictates the customization. No method resulted in perfect
discrimination, but many methods were substantially better than random guessing.

Section 4 reviewed a procedure for calculating calibrated p-values for observational studies. We
have developed a related procedure for calculating calibrated confidence intervals that involves in-
verting the hypothesis test associated with the calibrated p-value. Thus, for example, the value zero
is in the 95% calibrated confidence interval for the true log relative risk if the two-sided calibrated
p-value exceeds 0.05. For values other than zero, we resort to injecting known relative risks into
simulated data (see Murray et al. 2011 for a complete description of the simulation procedure).

We believe that the path forward for observational studies lies not only in more thought-
ful and careful study design but also in augmenting current practice by applying a rigorous and
empirically-driven systematic approach to study design. This approach considers observational
studies as instruments for making measurements. Only by systematically measuring and compar-
ing performance of well-characterized processes can we hope to improve our ability to measure the
strength of association between drug exposure and outcome and to distinguish between positive
and negative effects. If the process is thoughtful and careful but ad hoc, comparing its application
across different problems is impossible, and therefore the process cannot be improved. As Popper
(1965) has pointed out, “I knew, of course, the most widely accepted answer to my problem: that
science is distinguished from pseudoscience—or from ‘metaphysics’—by its empirical method,
which is essentially inductive, proceeding from observation or experiment.” Applying an empir-
ically based approach to observational analysis offers tremendous potential for meaningfully and
reliably contributing to the scientific evidence base needed to support medical practice.
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