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Università Roma Tre

A. P. Dawid

University College London

1 Introduction

Legal applications of probabilistic and statistical reasoning have a long his-
tory, having exercised such pioneers as Nicolas Bernoulli, Condorcet, Laplace,
Poisson and Cournot (Zabell 1988). After a period of neglect interest has
resurfaced in recent years, and the topic has given rise to many challenging
problems.

Evidence presented in a case at law can be regarded as data, and the
issue to be decided by the court as a hypothesis under test. The relationship
between these may be immediate, or indirect, involving a long chain or tan-
gled web of intermediate propositions. In any case there will be uncertainty
about both the ultimate issue and the way in which the evidence relates to it,
and such uncertainty can, in principle at least, be described probabilistically.
But, even when appropriate probabilities can be agreed on, their correct
handling is by no means obvious or intuitive, and fallacious arguments and
inferences abound.

2 Probability logic

In a case at law, let E denote one or more items of evidence — perhaps its
totality. We need to consider how this evidence affects the comparison of
the hypotheses, H0 and H1 say, offered by either side. Thus in a criminal
case with a single charge against a single defendant, the evidence might be
that the defendant’s DNA profile matches one found at the crime scene;
hypothesis H0, offered by the defence, is that the defendant is innocent (G);
the prosecution hypothesis, H1, is that of guilt (G).
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The adjudicator needs to assess his or her conditional probability for
either hypothesis, given the evidence: Pr(H0|E) and Pr(H1|E). However, it
will not usually be possible to assess these directly, and they will have to be
constructed out of other, more basic, ingredients. In particular, it will often
be reasonable to assess directly Pr(E|H0) and Pr(E|H1): the probability that
the evidence would have arisen, under each of the competing scenarios.

Bayes’s theorem tells us that

Pr(H1|E)

Pr(H0|E)
=

Pr(H1)

Pr(H0)
× Pr(E|H1)

Pr(E|H1)
. (1)

The left-hand side of (1) is the posterior odds for comparing H1 and H0,
given the evidence E : this is a simple transformation of Pr(H1|E), the desired
posterior probability of H1.

The second term on the right-hand side of (1) is constructed out of the
directly assessed terms Pr(E|H0) and Pr(E|H1): it is the likelihood ratio (for
H1, as against H0) engendered by the evidence E . It is noteworthy that
only the ratio of these terms enters, their absolute values being otherwise
irrelevant.

To complete (1) we need the term Pr(H1)/Pr(H0), the prior odds for
comparing H1 and H0 (i.e., before the evidence E is incorporated). This
might reasonably vary from one individual juror to another, so that it would
not be appropriate to treat it as a subject for direct evidence. For this reason
forensic experts are often instructed to give their evidence in the form of a
likelihood ratio, it being left to the adjudicator to combine this appropriately
with the prior assessment, using (1).

We can express (1) in words as:

POSTERIOR ODDS = PRIOR ODDS × LIKELIHOOD RATIO.

When E denotes all the evidence in the case, all the probabilities in (1) are
unconditional; in particular, the prior odds should be assessed on the basis
that there is no evidence to distinguish the suspect from any other potential
suspect — this can be regarded as a formalisation of the legal doctrine of the
“presumption of innocence”. When E denotes a piece of evidence given in
mid-process, all the probabilities in (1) must be conditioned on the evidence
so far presented: in particular, the “prior” probabilities could themselves
have been calculated, using (1), as posterior probabilities based on earlier
evidence.

Notwithstanding the unarguable correctness of (1), it is often replaced by
other, more intuitive, probabilistic arguments, which can be very misleading.
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2.1 The prosecutor’s fallacy

In a criminal trial, an item of evidence E may be offered in proof of the
guilt, G, of a defendant S, on the basis that the probability of E would
be very low if S were not guilty (G). For example, in the trial of Sally
Clark for double infanticide (Dawid 2006; Dawid 2005), an expert medical
witness testified that the probability that both her babies would have died
from natural causes was one in 73 million.1 If, as appears very natural,
we describe this figure as “the probability that the babies died by innocent
means” it is all too easy to misinterpret this as as the probability (on the
basis of the evidence of the deaths) that Sally is innocent — such a tiny figure
seeming to provide incontrovertible proof of her guilt. Mathematically, this
is equivalent to misinterpreting Pr(E|G) as Pr(G|E). For obvious reasons
this error is known as “transposing the conditional”, or, because it typically
produces seemingly convincing evidence of guilt, “the prosecutor’s fallacy”.

The prosecutor’s fallacy is a seductive and widespread mode of reasoning,
affecting the general public, the media, lawyers, jurors and judges alike.
Although we do not have access to the deliberations of Sally Clark’s jury,
it has generally been considered that their “Guilty” verdict was strongly
influenced by such mistaken reasoning.

2.2 Forensic identification

A particularly fertile field for the prosecutor’s fallacy to flourish is that of
identification evidence. Here (unlike the case for Sally Clark) it is undisputed
that a crime has been committed: the issue before the court is just whether
or not the suspect, S, is indeed the culprit, C. Thus the hypothesis G of
guilt is equivalent to that of identity, C = S. Evidence E is presented which
bears on this. This may be, for example, eye-witness evidence (as in the
celebrated “Collins case” (Fairley and Mosteller 1977), which kick-started
modern interest in the interpretation of probabilities in the law), or foren-
sic evidence of a match between some characteristic of the crime scene (the
“crime trace”) and a similar characteristic measured on the suspect. Ex-
amples include handwriting, rifling marks on bullets, glass fragments, fibres,
footprints, fingerprints, bitemarks, and, of especial importance and power,
DNA profiles. It is common in such a case for the jury to be told something
like “The probability of this DNA match arising from an innocent man is
only one in one billion”, and for all parties to misinterpret this number, in
line with the prosecutor’s fallacy, as the probability of S’s guilt.

1This figure has itself been widely and properly criticised, but that is not the issue
here.
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3 The island problem

The “island problem” (Eggleston 1983, Appendix 3) is a toy example that
well illustrates the uses and misuses of statistical logic in forensic identifica-
tion.

A murder has been committed on an island, cut off from the outside world,
on which N + 1 inhabitants remain. Forensic evidence at the scene consists
of a measurement, IC = x, on a “crime trace” characteristic IC , which can be
assumed to come from the criminal C. The probability of a random member
of the population having characteristic x is P . The mainland police arrive
and arrest a random islander, S. It is found that S matches the crime trace:
IS = x. There is no other relevant evidence. How should this match evidence
be used to assess the claim that S is the murderer?

We shall consider a number of arguments that have been used to address
this question. Those in §§ 3.2, 3.3 and 3.7 below yield the correct answer, the
remainder being fallacious: we leave it to the reader to identify the reasons.
For illustration, following Eggleston, we take N = 100, P = 0.004.

3.1 Prosecutor’s fallacy

Prosecuting counsel, arguing according to his favourite fallacy, asserts that
the probability that S is guilty is 1−P , or 0.996, and that this proves guilt
“beyond a reasonable doubt”.

3.2 Defence counter-argument

Counsel for the defence points out that, while the guilty party must have char-
acteristic x, the expected further number having this characteristic among
the remaining N innocent islanders is NP . Hence the set of islanders having
this characteristic can be taken to have size 1 + NP . The match evidence
places S in this set, but does not otherwise distinguish him from any of the
other members of it. Since just one of these is guilty, the probability that this
is S is thus 1/(1 + NP ), or 0.714 — indicative, perhaps, but not “beyond a
reasonable doubt”.

3.3 Bayesian argument

Conditioning all the time on the evidence IC = x from the crime scene (which,
we assume, of itself has no bearing on the issue of guilt), and taking E to
be the additional “match evidence” IS = x, the probability of this evidence
would be Pr(E|G) = 1 if S were guilty (S = C), and Pr(E|G) = P if he were
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innocent. Hence the likelihood ratio in favour of guilt, on the basis of the
match evidence, is

LR :=
Pr(E|G)

Pr(E|G)
=

1

P
,

or LR = 250.
While this seems strong evidence in favour of guilt, a complete proba-

bilistic argument must also incorporate the prior odds on guilt, before taking
account of the match evidence. We can argue that, in the absence of any
other evidence, S is no more nor less likely to be the culprit than any other
islander, so that the prior probability of guilt is 1/(N + 1), corresponding to
prior odds on guilt of 1/N .

We can now apply Bayes’s theorem (1) to obtain the posterior odds on
guilt:

(1/N)× (1/P ) = 1/NP. (2)

The corresponding posterior probability of guilt is

Pr(G|E) =
1

1 + NP
, (3)

or 0.714.
Note that this Bayesian argument could be readily modified to incorporate

additional evidence if available — it is merely necessary to adjust the prior
odds appropriately (either informally, or formally by means of yet another
application of Bayes’s theorem) to take that into account.

We see that, in the absence of additional evidence, this result accords
with that of the Defence argument above.

3.4 Supreme Court argument

In its appeal judgment on the “Collins case”, the Supreme Court of California
argued on the following lines. Denote by M the unknown number of islanders
possessing characteristic x. Before obtaining any evidence, we can take M
to have the binomial distribution Bin(N +1; P ). Now we have observed that
S has characteristic x, and so have learned that M ≥ 1. If M = 1 there is
no other matching individual, and S must be guilty; however, if there is a
non-negligible probability that M > 1, so that S is not the only matching
individual, this would be a source of doubt as to S’s guilt. Hence the Supreme
Court calculated

Pr(M > 1|M ≥ 1)

=
1− (1− P )N+1 − (N + 1)P (1− P )N

1− (1− P )N+1
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which, for our illustrative figures, yields 0.19. An approximately 20% chance
of there being another islander having the matching characteristic could be
considered enough to raise reasonable doubt as to S’s guilt.

3.5 Supreme Court: Variation 1

The above line of argument can be developed further, as follows. With no
other evidence, we can take Pr(G|M = m) = m−1. As above, we condition
the initial Bin(N + 1; P ) for M on the known fact that M ≥ 1, to obtain:

Pr(G|E) = E
(
M−1|M ≥ 1

)
.

This is not simply expressible algebraically, but can be calculated numeri-
cally: for our illustrative figures, it yields Pr(G|E) = 0.902.

3.6 Supreme Court: Variation 2

An alternative argument is that, given the evidence, we know that there is
one guilty match, and, out of the remaining N innocent individuals, each
has, independently, probability P of supplying a match. So the conditional
distribution of M is 1 + Bin(N ; P ). Using this to take the expectation of
M−1 yields

Pr(G|E) =
1− (1− P )N+1

(N + 1) P
(4)

which, for our values, gives 0.824.

3.7 Supreme Court: Variation 3

We can consider the total evidence (IC = x, IS = x) as the results, both
successes, of two draws, with replacement (since C and S could be the same
individual), from the population. The probability of this, given M = m, is
{m/(N + 1)}2 and, using Bayes’s Theorem, the resulting conditional distri-
bution of M is

Pr(M = m|IC = x, IS = x)

= c m

 N

m− 1

 P m−1 (1− P )N−m+1

(m = 1, . . . , N + 1),

where the normalising constant is c = 1/(1 + NP ). Taking the expectation
of M−1 with respect to this distribution then yields

Pr(G|E) = 1/(1 + NP ),
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or 0.714 — in agreement with the Bayesian and defence arguments.

4 The effect of search

We have so far supposed that the suspect S was selected at random from the
island population and, quite fortuitously, found to match the crime trace.
More realistically, the police might trawl through the population until they
discover an individual who provides a match. If this occurs for the (q +1)’th
individual examined, then q necessarily innocent parties have been elimi-
nated, thereby reducing the size of the remaining suspect population from
N to N − q. Intuitively it would seem that formulae (2) and (3) given above
must therefore be adjusted by making this substitution, so yielding

Pr(G|q) =
1

1 + (N − q)P
. (5)

This is correct, but the full analysis is more subtle since it must account for
the probabilistic nature of the outcome q of the search (Dawid and Mortera
1995).

Formula (5) can only be applied when we know q, the number of non-
matching individuals examined before the matching suspect S is found. But
whatever the value of q, (5) will yield a value at least as large as (3). It
follows that, if we know only that a search has been conducted to identify
a suspect but are not told q, the answer given by formula (3) must be too
small. In fact it turns out that, in this case, the correct formula is (4). We
leave it to the reader to explain why this should be so.

4.1 Database search

Search scenarios are common in cases where a DNA trace is found at the
crime scene and, in the absence of any obvious suspect, a search for a match
is made through a police database of DNA profiles. Such databases can be
very large – by December 2005 the UK database comprised around 3 million
profiles, with about 3000 “matches” being made per month.

Computerised search typically allows us to identify every individual in the
database whose DNA profile matches the crime trace. Suppose that there
is exactly one such individual, S. If the initial suspect population is of size
N + 1 and the database is of size n + 1, then the search has eliminated n
individuals from the suspect population and so, if there is no other evidence to
distinguish among those remaining, the odds on S being guilty are increased
from 1/NP , as in (2), to 1/(N − n)P . (If there is other evidence for or

7



against S, this could be expressed as a likelihood ratio, and combined with
the above odds using Bayes’s theorem. It is also possible to account for
evidence pointing the finger towards or away from other individuals.)

When n is small in relation to N the effect of the database search is
only a small increase in the probability that S is guilty. This is fortunate,
since evidence that a search was conducted to identify the suspect is usually
inadmissible in court. Ignoring it will typically make little difference, and to
the extent that it does it will be to the advantage of the defendant.

However at the other extreme, where the whole population is searched
(n = N) and S is the only individual found to match, we obtain infinite odds,
corresponding to certainty, that S is guilty — as is obviously appropriate in
this case.

4.1.1 Alternative arguments

Other arguments, with very different implications, have also been brought to
bear on this problem.

One freqentist view, recommended by the US National Research Council
(1996), treats the problem as analogous to that of multiple statistical hy-
pothesis testing, where the strength of the evidence has to be adjusted to
account for the very fact that a search has been conducted. It is argued that,
since any match found in the database would have resulted in a prosecu-
tion, the relevant “match probability” is no longer the probability, P , that
S would match the crime trace (if innocent), but the probability, approxi-
mately (n + 1)P , that some match would be found in the database (if all its
members were innocent). The impact of the evidence, as measured by the
match probability, is thus attenuated by a factor of n + 1, the size of the
database. Even if this is only a very small fraction of the total population, it
can be very large in absolute size, which would appear to render the match
evidence essentially worthless.

A closely related likelihood viewpoint is taken by Stockmarr (1999). He
claims that it is not appropriate to assess a likelihood for the hypothesis HS

that S is guilty, since that hypothesis could not even have been formulated
before the search was conducted. Hence, he claims, we should instead focus
on the hypothesis HD — which can be formulated before the search — that
the database D contains the culprit. When the search then turns up a
single match, the corresponding likelihood ratio in favour of HD (as against
its negation) is about 1/(n + 1)P (as compared with 1/P in favour of the
“data-dependent” hypothesis HS). Moreover, whoever the (unique) matching
individual turns out to be, the hypothesis HD becomes logically equivalent
to the hypothesis that this matcher is the culprit, which is the proposition
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that will be put before the court. Consequently the strength of the evidence
is more appropriately measured by a likelihood ratio of 1/(n + 1)P than one
of 1/P .

We can reconcile this view with the analysis of § 4.1 above if we remem-
ber that a likelihood ratio is only one of the ingredients in Bayes’s theorem
(Dawid 2001). If we replace HS by HD, not only will the likelihood ratio
change, but so too will the prior odds: a priori the odds on the culprit being
included in the database are about (n + 1) times greater than the odds on
his being the specific individual S. This change to the prior odds on moving
between these hypotheses exactly cancels with that to the likelihood ratio.
There is thus no net effect on the posterior odds: both approaches deliver
the same ultimate verdict.

4.2 Which likelihood ratio?

The above analysis does however lead to problems for the forensic scientist,
who is, quite properly, trained to testify as to “the likelihood ratio” generated
by the evidence, and not directly as to the posterior probability. When, as
above, we have a choice as to how to frame the hypotheses, there is no unique
likelihood ratio (although the posterior probability will be unaffected by this
indeterminacy). In that case it would seem more helpful to the court to
present the likelihood ratio for the hypotheses of direct interest: that S is,
or is not, the culprit.

A related issue arises when it can be assumed that the crime was com-
mitted by two persons, each of whom has left a DNA trace at the scene
(say, one on a pillow and one on a sheet). S is arrested and it is found that
his DNA matches the trace from the pillow, which has population frequency
P . Under reasonable assumptions it can be shown (Dawid 2004) that the
likelihood ratio in favour of the hypothesis that S was one of the culprits,
as against his innocence, is 1/(2P ). But (given the evidence) S is guilty if
and only if he left the stain on the pillow, and taking this as the hypothesis
at issue leads to a likelihood ratio (as against S’s innocence) of 1/P . Other
ways of framing the hypotheses yield yet other results (Meester and Sjerps
2004).

Once again these different answers can be reconciled by taking proper
account of the differing prior probabilities. But if one value is to be given
to the court as “the likelihood ratio”, what should it be? The first value
quoted above, 1/(2P ), does directly address the question at issue: is S guilty
or not? On the other hand, the very existence of two culprits makes it a
priori about twice as probable that S is guilty as would hold for the case of
a single-culprit crime. If the court is used to thinking about this latter case,
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and is not attuned to the need to double the prior probability, one might
argue, as a pragmatic solution, that the “correct” likelihood ratio, 1/(2P ),
should be doubled, so as to build this correction in automatically. . . which
would bring us back to the value 1/P .

5 Complex patterns of evidence

The difficulties of assessing a single item of evidence are compounded when
we want to account for the complex inter-relationships between the many
items of evidence in a case. To organise the evidence it is then helpful to
construct a diagrammatic representation all the evidence and hypotheses in
the problem, and the relationships between them. This idea was first sug-
gested by Wigmore (1937): see Anderson et al. (2005) for an introduction to
the “Wigmore chart” method. More recently the methods of graphical mod-
elling and Bayesian networks — also known as probabilistic expert systems
(Cowell et al. 1999) — have been applied. Such a network contains a node
for each variable in the problem, with arrows between nodes to denote prob-
abilistic dependence of a “child” node on all its “parents”. To complete the
description we need the numerical or algebraic specification of the associated
conditional probabilities.

5.1 Example

Dawid and Evett (1997) consider a fictitious burglary case, described as
follows:

An unknown number of offenders entered commercial premises
late at night through a hole which they cut in a metal grille. In-
side, they were confronted by a security guard who was able to set
off an alarm before one of the intruders punched him in the face,
causing his nose to bleed.

The intruders left from the front of the building just as a police
patrol car was arriving and they dispersed on foot, their getaway
car having made off at the first sound of the alarm. The security
guard said that there were four men but the light was too poor for
him to describe them and he was confused because of the blow he
had received. The police in the patrol car saw the offenders only
from a considerable distance away. They searched the surrounding
area and, about 10 minutes later, one of them found the suspect
trying to “hot wire” a car in an alley about a quarter of a mile
from the incident.
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At the scene, a tuft of red fibres was found on the jagged end of
one of the cut edges of the grille. Blood samples were taken from
the guard and the suspect. The suspect denied having anything to
do with the offence. He was wearing a jumper and jeans which
were taken for examination.

A spray pattern of blood was found on the front and right sleeve
of the suspect’s jumper. The blood type was different from that of
the suspect, but the same as that from the security guard. The tuft
from the scene was found to be red acrylic. The suspect’s jumper
was red acrylic. The tuft was indistinguishable from the fibres of
the jumper by eye, microspectrofluorimetry and thin layer chro-
matography (TLC). The jumper was well worn and had several
holes, though none could clearly be said to be a possible origin for
the tuft.

In this example there are three general kinds of evidence: eye-witness,
blood, and fibre; and for each kind a variety of individual evidential items.
We can summarise the salient features of the evidence against the suspect as
follows:

EYEWITNESS

G : The evidence of the security guard

W : The evidence of the police officer who arrested the suspect

BLOOD

R : The bloodstain in the form of a spray on the suspect’s jumper

X1: Suspect’s blood type

X2: Guard’s blood type

Y2: Blood type of blood spray on jumper

FIBRES

X3: Properties of the suspect’s jumper

Y1: Properties of fibre tuft

The uncertain hypotheses and variables that enter are:

HYPOTHESES

C: Whether the suspect was or was not one of the offenders
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A: The identity of the person who left the fibres on the grille

B: The identity of the person who punched the guard

N : The number of offenders

Of these the specific charge before the court is C = true; the others are
included to provide a complete account of the problem.

Figure 1: Bayesian network for burglary example

Figure 1 shows a graphical representation of the problem as a Bayesian
network. The evidence items are shown as squares, and the hypotheses as
circles. Variable Y2, the measurement of the blood type of the spray on the
jumper is dependent on X1, the suspect’s blood type (because it might be a
self stain) and the guard’s blood type X2. But information is also provided
by R, the variable which describes the shape of the stain, because that sheds
light on whether or not it might be a self stain. In turn, the shape of the stain
is influenced by the way in which the guard was punched, G2, and B, the
identity of the person who did it; while B is in turn influenced by whether
or not the suspect was one of the offenders, variable C, and also the number
of offenders, N .

Dawid and Evett (1997) describe how the graph can be used to read off
implicit properties of independence: for example, to show that, conditionally
on knowing A and N , the pair of variables (B, R) is independent of the
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pair (G1, Y1). These properties can then be used to simplify the algebraic
and numerical identification of the overall likelihood ratio for comparing the
hypotheses C = true or C = false, based on the evidence.

Taroni et al. (2006) give a detailed account of theory and applications of
Bayesian networks in problems of forensic inference. For further interesting
examples see Baio and Corradi (2003); Cavallini and Corradi (2005).

6 Forensic genetics

Most of the logic so far presented applies in principle to any kind of iden-
tification evidence. But forensic DNA evidence has some additional special
features, principally owing to its pattern of inheritance from parent to child.
These make it possible to use it to address queries such as the following:

Disputed paternity: Is individual A the father of individual B?

Disputed inheritance: Is A the daughter of deceased B?

Immigration: Is A the mother of B? How is A related to B?

Criminal case: mixed trace: Did A and B both contribute to a stain
found at the scene of the crime? Who contributed to the stain?

Disasters: Was A among the individuals involved in a disaster? Who were
those involved?

Once again, the impact of the totality of the DNA evidence E available,
from all sources, is crystallised in the likelihood ratio, LR = P (E|H1)/P (E|H0)
— at any rate if we are only comparing two hypotheses H0 and H1. More
generally, we require the full likelihood function, a function of the various
hypotheses H being entertained:

LR(H) ∝ Pr(E|H).

We also need the full range of prior probabilities, Pr(H). Posterior probabil-
ities are again obtained from Bayes’s theorem, now expressed as

Pr(H|E) ∝ Pr(H)× LR(H). (6)

In a simple disputed paternity case, the evidence E will comprise DNA
profiles from mother, child and putative father. Hypothesis H1 is that the
putative father is the true father, while hypothesis H0 might be that the true
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father is some other individual, whose DNA profile can be regarded as ran-
domly drawn from the population. We can also entertain other hypotheses,
such as that one of one or more other identified individuals is the father, or
that the true father is the putative father’s brother.

In a complex criminal case, we might find a stain at the scene of the
crime having the form of a mixed trace, containing DNA from more than one
individual. DNA profiles are also taken from the victim and a suspect. We
can entertain various hypotheses as to just who — victim? — suspect? —
person or persons unknown? — contributed to the mixed stain.

6.1 Genetic background

To proceed further we need some basic genetic facts about DNA profiles.
A forensic marker is a specially selected stretch (or locus) of “junk DNA”

in the genome. Current technology uses short tandem repeat (STR) markers.
Each such marker has a finite number (up to around 20) of possible values, or
alleles , generally positive integers. For example, an allele value of 5 indicates
that a certain word (e.g., CAGGTG) is repeated exactly 5 times in the DNA
at that locus.

An individual’s DNA profile comprises a collection of genotypes , one for
each of around 12–20 standard markers. Each genotype consists of an un-
ordered pair of alleles, one inherited from the father and one from the mother
(though one cannot distinguish which is which). When both alleles are iden-
tical the individual is homozygous at that marker, and only a single allele
value is observed; else the individual is heterozygous . In most cases a DNA
profile can be measured without error, even from a single cell.

Assuming Mendelian segregation, at each marker a parent passes a copy
of just one of his two alleles, randomly chosen, to his or her child, inde-
pendently of the other parent and independently for each child. Distinct
forensic markers are located on different chromosomes, so segregate indepen-
dently. It is often reasonable to assume random mating within an appropriate
population, which then implies independence of alleles both within mark-
ers (Hardy-Weinberg equilibrium) and across markers (linkage equilibrium).
Databases have been gathered from which allele frequency distributions, for
various populations, can be estimated for each forensic marker. On the basis
of these values and the independence assumptions, a profile probability can
be assigned to any DNA profile, measuring its rarity in the population.2

2Although we do not develop this here, one should really allow for the fact that allele
frequency estimates based on finite databases remain uncertain. A simple way of doing this
is to add the DNA data from all available individuals, including the suspect and any other
parties in the case at hand, to the relevant database (Dawid and Mortera 1996). Likewise
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6.2 Simple disputed paternity

A man is alleged to be the father of a child, but disputes this. DNA pro-
files are obtained from the mother m, the child c, and the putative father
pf. On the basis of these data, we wish to assess the likelihood ratio for the
hypothesis of paternity : H1: tf = pf, the true father is the putative father;
as against that of non-paternity : H0: tf = af — where af denotes an un-
specified alternative father, treated as unrelated to pf and randomly drawn
from the population.

The disputed pedigree can be represented as in Figure 2.

Figure 2: Pedigree for simple disputed paternity

Because of our independence assumptions, we can analyse the markers
one at a time, finally multiplying their associated likelihood ratio values
together to obtain the overall likelihood ratio based on on the full collection
of markers.

Consider now the measured genotypes, from all three parties, for some
fixed marker. Under paternity, H0, we just apply Mendel’s laws of segre-
gation; under non-paternity, H1 we require (estimates of) the frequencies of
relevant marker alleles among the population. Using (1) this can then be
combined with the prior odds of paternity, based on external background
evidence B, in order to obtain the posterior odds for paternity. As an illus-
trative example, suppose that the data, for marker D7, are: child’s genotype
cgt= {12, 12}, mother’s genotype mgt= {10, 12}, putative father’s genotype
pfgt= {10, 12}. The estimated population frequencies of alleles 10 and 12
are, respectively, 0.284 and 0.260. In this case, conditioning on the genotypes
of mother and putative father (which makes no difference to the answer), we

the independence assumptions we make are somewhat simplistic, and, for example, suitable
allowance should be made for the fact that two individuals already found to match at one
or more markers are likely to have a relatively recent common ancestor, so increasing the
chance that they will match at another marker (Balding and Nichols 1994).
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see that the child’s genotype will be as observed if and only if both the
mother and the true father contributed allele 12 to the child. This event has
probability 0.5× 0.5 if the true father is the putative father, and probability
0.5× 0.260 if the true father is, instead, some unrelated individual from the
population. Thus the likelihood ratio in favour of paternity, based on marker
D7 alone, is 1.93.

6.3 DNA mixtures

A mixed DNA profile is typically obtained from an unidentified biological
stain or other trace thought to be associated with a crime. This commonly
occurs in rape cases, in robberies where an object might have been handled
by more than one individual, and also in a scuffle or brawl. For a mixed
DNA trace there is no constraint on the number of distinct alleles observed
for each marker, since the trace might have been formed as a mixture of
biological material from more than one person.

In simple cases of DNA mixtures when using only the qualitative allele in-
formation, algebraic formulae for calculating the likelihoods of all hypotheses
involving a specified set of known and unknown contributors to the mixture
can be computed (assuming Hardy-Weinberg equilibrium and known allele
frequencies).

To illustrate, suppose that, for a single DNA marker, we have a three-
allele crime trace {A, B, C}, and individual profiles from a victim, v =
{B, C}, and a suspect, s = {A}. These together with the allele frequen-
cies constitute the evidence E for the case. Suppose we wish to compute
the likelihood ratio in favour of the hypothesis that the victim and suspect
contributed to the mixture: H0: v & s, as against the hypothesis that the
victim and an unknown individual u contributed to the mixture: H1: v & u.
It is not difficult to show that in this case the LR is

LR =
1

p2
A + 2pApB + 2pApC

, (7)

where pi is the frequency of allele i in the population.

7 Bayesian networks for forensic DNA iden-

tification

It is very easy to complicate the above simple problems to the point that
the required probabilistic formulae become difficult or impossible to obtain
or apply.

16



In cases of disputed paternity it commonly occurs that the DNA profiles
of one or more of the “principal actors” in the pedigree are not available;
but there is indirect evidence, in the form of DNA profiles of various known
relatives. In § 7.5 below we consider such a case, where the putative father
is unavailable for testing, but we have DNA from two of his brothers and an
undisputed child of his by another woman. The analysis of all the data is
clearly now much more complex. Likewise the appropriate extensions of (7)
become relatively complex when the number of potential contributors to the
mixture becomes large; or if we want to use quantitative data (peak areas),
which contain important additional information about the composition of the
mixture; or to allow for uncertainty in allele frequencies and/or population
substructure.

To handle such cases sophisticated probabilistic modelling tools are re-
quired. Again, Bayesian networks, together with their associated computa-
tional methodology and technology, have been found valuable for this, par-
ticularly in their “object-oriented” (OOBN) form, as implemented in com-
mercial software such as Hugin 6 3. Bayesian networks for evaluating DNA
evidence were introduced by Dawid et al. (2002). Further description and
developments can be found in Mortera (2003); Mortera et al. (2003); Vicard
et al. (2004); Cowell et al. (2004); Dawid et al. (2006); Dawid et al. (2005);
Taroni et al. (2006).

For some illustrative cases, we describe below how we can construct a
suitable OOBN representation of a complex DNA identification problem,
incorporating all the individuals involved and the relationships between them.

7.1 Simple disputed paternity

We use the example in § 6.2 of simple disputed paternity to introduce some
basic ingredients of forensic OOBNs.

In fact Figure 2 is just the relevant “top-level” network, constructed us-
ing the graphical interface to Hugin 6. Each node (except the hypothesis
node tf=pf?) in Figure 2 is itself an “instance” of another generic (“class”)
network, with further internal structure. We describe only selected features
here. A fuller description of OOBN networks for paternity casework can be
found in Dawid et al. (2006); Dawid et al. (2005).

Each of m, pf and af is an instance of a class founder, while c is an
instance of class child and tf is an instance of class query.

Within founder (not shown) we have two instances (maternal and pa-
ternal genes) of a class gene which embodies the relevant repertory of alleles

3Obtainable from www.hugin.com
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and their associated frequencies.
The internal structure of child is displayed in Figure 3.

Figure 3: Networks child and mendel

On the paternal (left-hand) side of child, the input nodes fpg and fmg

represent the child’s father’s paternal and maternal genes. These are then
copied into nodes pg and mg of an instance fmeiosis of a class network
mendel, whose output node cg is obtained by flipping a fair coin (node
cg=pg?) to choose between pg and mg; this is then copied to pg (child’s
paternal gene) in network child. A similar structure holds for the maternal
(right-hand) side of child. Finally pg and mg are copied into an instance gt of
a network class genotype, which forgets the information on parental origin
(this is also a feature of founder). Any DNA evidence on the individual is
entered here.

The hypothesis node tf=pf? embodies H0 (tf = pf) when it takes the
value true and H1 (tf = af) when false; it feeds into the instance tf of class
query to implement this selection. We initially, and purely nominally, set
both hypotheses as equally probable, so that, after propagation of evidence,
the ratio of their posterior probabilities yields the paternity ratio based on
this marker. By entering the data for each marker into the appropriate
Bayesian network, we can thus easily calculate the associated likelihood ratio
for paternity.

We build a separate such network for each STR marker, incorporating
the appropriate repertoire of alleles and their frequencies. On entering the
available DNA data, we can compute the associated likelihood ratio. Finally
we multiply these together across all markers to obtain the overall likelihood
ratio.

Once supplied with the basic building blocks founder, child and query,
we can connect them together in different ways, much like a child’s construc-
tion set, to represent a wide range of similar problems. An illustration is
given in the next section.
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7.2 Complex disputed paternity

Figure 4 is a OOBN representation of a disputed paternity case where we
have DNA profiles from a disputed child c1 and from its mother m1, but
not from the putative father pf. We do however have DNA from c2, an
undisputed child of pf by a different, observed, mother m2, as well as from
two undisputed full brothers b1 and b2 of pf. The sibling relationship is
made explicit by the incorporation of the unobserved grandfather gf and
grandmother gm, parents of pf, b1 and b2. The “hypothesis node” tf=pf?

again indicates whether the true father tf is pf, or is an alternative father
af, treated as randomly drawn from the population.

Figure 4: Pedigree for incomplete paternity case

Nodes gf, gm, m1, m2 and af are all instances of class founder; pf, b1,
b2, c1 and c2 are instances of class child; tf is an instance of class query.

The DNA evidence E consisted of the 6 DNA profiles, each comprising
10 STR markers, from m1, m2, c1, c2, b1 and b2. By entering the data
for each marker into the Bayesian network (incorporating the appropriate
alleles for that marker and their frequencies), we can thus easily calculate
the associated likelihood ratio for paternity. The overall paternity ratio is
given by their product: around 1300 for this particular case.

7.3 Mutation

It is easy to modify these networks to incorporate a variety of additional com-
plications. One such is the possibility of mutation of genes in transmission
from parent to child, which could lead to a true father appearing to be ex-
cluded (Dawid et al. 2001; Dawid et al. 2003; Dawid 2003; Vicard and Dawid
2004; Vicard et al. 2004). We must now distinguish between a child’s original
gene cog, identical with one of the parent’s own genes, and the actual gene
cag available to the child, which may differ from cog because of mutation.
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We elaborate the class network mendel of Figure 3, as shown in Figure 5 by
passing its original output cog (“child’s original gene”) through an instance
cag (“child’s actual gene”) of a new network mut, constructed to implement
whatever model is used to describe how the value of cog is stochastically
altered by mutation. The output of cag is then copied to cg. Thus mendel
now represents the result of mutation acting on top of Mendelian segregation.

Figure 5: Revised network mendel, incorporating mutation

Once an appropriate network mut has been built, and mendel modified
as described above, pedigree networks constructed as in Sections 7.1 or 7.2
will now automatically incorporate the additional possibility of mutation.

7.4 Silent alleles

Yet another complication that is easily handled by simple modifications to
lower-level networks is the possibility that some alleles may not be recorded
by the equipment, so that a truly heterozygous genotype appears homozy-
gous (Dawid et al. 2005; Dawid et al. 2006). This may be due to sporadic
equipment failure, in which case it is not inherited and we talk of a missed
allele; or to an inherited biological feature, in which case we refer to the allele
as silent .

In some cases, making proper allowance for these possibilities can have a
dramatic effect. Table 1 shows results for a particular case where, in addition
to the genotypes mgt, pfgt and cgt of mother, putative father and child, we
also have the genotype bgt of the putative father’s brother. These refer to
the single STR marker vWA.

If we had complete data on the genotypes mgt, pfgt and cgt, the ad-
ditional data bgt could have no impact whatsoever on the paternity ratio.
In the case shown, in the absence of silence we have an exclusion. Allow-
ing for silence, at various rates, but using only the data on the basic family
triplet, gives the paternity ratios in the column labelled LD, from which we
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already see that a small probability of silence can in fact lead to a pater-
nity ratio greater than 1 — now constituting evidence in favour of paternity.
The remaining columns show the additional (multiplicative) effect of using
the information on the brother’s genotype bgt, for various cases. The first
row shows that, even as the probability of silence tends to 0, its disturb-
ing effect can be very substantial. In fact when bgt = {12, 12}, the overall
paternity ratio LR = LD × LB achieves a maximum value of 1027.3, at
pr(silent) = 0.0000642, even though it vanishes for pr(silent) = 0.

LB with bgt =

pr(silent) LD {16, 20} {12, 17} {12, 14} {14, 17} {14, 14} {16, 16} {12, 12}
0 0 1 1 0.546 0.546 1 6.13 3334

0.000015 0.472 1 1 0.546 0.546 1.0000 6.12 1595

0.0001 2.473 1 1 0.546 0.546 0.9999 6.07 403.7

0.001 7.485 1 1 0.551 0.551 0.9992 5.54 46.07

0.01 8.100 1 1 0.590 0.590 0.9932 3.19 5.45

Table 1: Disputed paternity with brother too. mgt = {12, 15}, pfgt = {14,
14}, cgt = {12, 12}. Likelihood ratio in favour of paternity allowing for silent
alleles: LD, without brother’s genotype. LB, additional effect of brother’s
genotype.

7.5 Bayesian networks for analysing mixed DNA pro-
files

Bayesian networks have also been constructed to address the challenging
problems that arise in the interpretation of mixed trace evidence, as described
in § 6.3. Figure 6 shows a lower level network which can be used for analysing
a mixture with two contributors. Typically one would be interested in testing
H0: v & s against H1: v & u; one might alternatively consider an additional
unknown individual u2 instead of the victim, with hypotheses H0: u2 & s
versus H1: u2 & u1).

The modular structure of Bayesian networks supports easy extension to
mixtures with more contributors, as in cases where a rape victim declares that
she has had one consensual partner in addition to the unidentified rapist, or
that she has been victim of multiple rape. Simple modification of the network
handles such scenarios, so long as the total number of contributors can be
assumed known.

In general, however, although the evidence of the trace itself will deter-
mine a lower bound to this total, there is in principle no upper bound. Thus
if in a trace we see that the maximum number of alleles in any marker is
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Figure 6: Bayesian network for DNA mixture from two contributors

three, we know that the minimum number of contributors that could have
produced this trace is two, but we can not be sure that there were only two.
However it is often possible to set a relatively low upper limit to the number
it is reasonable to consider. We allow, as contributors to the mixture, per-
sons with known DNA profiles, such as the victim and suspect, and possibly
also unknown individuals. Each of the various hypotheses we consider will
include an assumption about the total number x of unknown contributors.
Thus the likelihood ratio LR needed to evaluate the DNA evidence E —
comprising the DNA profiles of the victim, the suspect and the mixed trace
— in favour of a hypothesis H0 against an alternative hypothesis H1 is

LR =
Prx0(E|H0)

Prx1(E|H1)
,

where xi denotes the number of unknown individuals involved in the hypoth-
esis Hi. To set a lower bound on LR it is sufficient to consider a worst case
scenario in the denominator, i.e. to find the most probable alternative hy-
pothesis H1. This can be done using the fact that the probability Prx(E|H)
based on x unknown contributors is necessarily smaller than the probability
that none of the alleles of the unknown contributors are outside those in the
evidence set E . It can be shown (Lauritzen and Mortera 2002) that

Prx(E|H) ≤
M∏

m=1

(
∑

a∈Em

pm
a )2x

where pm
a is the frequency of allele a at marker m (m = 1, · · ·M) and Em

denotes the set of observed alleles at marker m. For y = Prx1(E|H1), one
can show that if the number of contributors, x, for a given hypothesis H, is
greater than

b(y) =
ln y

2
∑M

m=1 ln(
∑

a∈Em
pm

a )
,
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this hypothesis is less likely than H1 and thus need not be considered.
Once it has been agreed to limit attention to some maximum total number

of potential contributors, cases where the number of contributors is unknown
can again be addressed using a Bayesian network, now including nodes for
the number of unknown contributors and the total number of contributors
(Mortera et al. 2003). This can be used for computing the posterior distribu-
tion on the total number of contributors to the mixture as well as likelihood
ratios for comparing all plausible hypotheses.

The modular structure of the Bayesian networks can be used to handle
still further complex mixture problems. For example, we can consider to-
gether missing individuals, silent alleles and a mixed crime trace simply by
piecing together the appropriate modules.

The issue of silent alleles in a mixed trace arose in the celebrated case of
People v. O. J. Simpson (Los Angeles County Case BA097211). At VNTR
marker D2S44, the crime trace showed a three-band profile ABC, the vic-
tim had profile AC, and the suspect had profile AB. The population allele
frequencies are taken as pA = 0.0316, pB = 0.0842, and pC = 0.0926 and the
frequency of a silent alleles as pn = 0.05. For this marker, Table 2 gives the
likelihoods (arbitrarily normalised to sum to 1) based on a network which
handles silent alleles and allows for up to two unknown contributors. Results
are shown both ignoring and allowing for silent alleles, and also for a “sim-
plified” rule for accounting for silence, as recommended in the report of the
National Research Council (1996), which substitutes the frequency p2 with
2p.

with silent allele

Hypothesis without silent exact 2p rule

s & v & 2u 0.0017 0.0039 0.0836

s & 2u 0.0015 0.0032 0.0598

v & 2u 0.0015 0.0031 0.0719

2u 0.0006 0.0008 0.0027

s & v & u 0.0392 0.0578 0.1886

s & u 0.0271 0.0340 0.0878

v & u 0.0253 0.0315 0.0805

s & v 0.9031 0.8657 0.4251

Table 2: O. J. Simpson case: likelihoods with unknown number of contribu-
tors, allowing for silent alleles
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Note that the likelihood ratio in favour of H0: s & v against H1: v & u,
when correctly accounting for a silent allele, is 35.7, as compared to 5.3 based
on the 2p rule. This clearly shows that in this case the rule recommended
by the National Research Council is over-conservative. Without accounting
for the possibility of a silent allele the likelihood ratio is 24.5. These figures
are computed on one marker alone. With evidence of this strength at every
marker, the overall likelihood ratio against the suspect based on a 10-marker
profile would be overwhelming.

So far we have only used qualitative information, namely which allele
values are present in the mixture and the other profiles. A more sensitive
analysis additionally uses measured “peak areas”, which give quantitative
information on the amounts of DNA involved. This requires much more de-
tailed modelling, but again this can be effected by means of a Bayesian net-
work (Cowell et al. 2004). Because the mixture proportion frac of DNA con-
tributed by one of the parties is a common quantity across markers, we must
now handle them all simultaneously within one “super-network”. Figure 7
shows the top level network for two contributors, involving six markers, each
an instance of a lower level network marker as shown in Figure 8. This
network is an extended version of the one shown in Figure 6 incorporating
additional instances needed to model the quantative peak area information.
In particular, the nodes Aweight etc. in marker are instances of a network
where the quantitative information on the peak weight is modelled.

Figure 7: 6-marker OOBN for mixture using peak areas, 2 contributors (re-
produced from Cowell et al. (2004))
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Figure 8: Network marker with three observed allele peaks.

Cowell et al. (2004) analyse the data shown in Table 3, taken from Evett
et al. (1998), involving a 6-marker mixed profile with between 2 and 4 distinct
observed bands per marker, and a suspect whose profile is contained in these.
It is assumed that this profile is a mixture either of the suspect and one other
unobserved contributor, or of two unknowns. Using only the repeat numbers
as data, the likelihood ratio for the suspect being a contributor to the mixture
is calculated to be around 25,000. On taking account of the peak areas also,
this rises to about 170,000,000.

Marker D8 D18 D21

Alleles 10∗ 11 14∗ 13∗ 16 17 59 65 67∗ 70∗

Peak area 6416 383 5659 38985 1914 1991 1226 1434 8816 8894

Marker FGA THO1 VWA

Alleles 21∗ 22∗ 23 8∗ 9.3∗ 16∗ 17 18∗ 19

Peak area 16099 10538 1014 17441 22368 4669 931 4724 188

Table 3: Data for mixed trace with two contributors. The starred values are
the suspect’s alleles.

8 Conclusions

We hope we have stimulated the reader’s interest in the application of proba-
bility and statistical reasoning to forensic science. There are many challeng-
ing logical subtleties, ambiguities and probabilistic pitfalls in legal reasoning,
some of which we have illustrated.
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We have also aimed to show the usefulness of Bayesian networks for rep-
resenting and solving a wide variety of complex forensic problems. Both
genetic and non-genetic information can be represented in the same network.
A particularly valuable feature is the modular structure of Bayesian networks,
which allows a complex problem to be broken down into simpler structures
that can then be pieced back together in many ways, so allowing us to ad-
dress a wide range of forensic queries. In particular, using object-oriented
Bayesian networks we have constructed a flexible computational toolkit, and
used it to analyse complex cases of DNA profile evidence, accounting appro-
priately for such features as missing individuals, mutation, silent alleles and
mixed DNA traces.
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