ON THE DISTRIBUTION OF THE CORRELATION CO-EFFICIENT IN SMALL SAMPLES. APPENDIX II TO THE PAPERS OF "STUDENT" AND R. A. FISHER.

A COOPERATIVE STUDY

By H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE AND K. PEARSON

CONTENTS

(1)	Introductory	PAGE 328
(2)	Properties of the Function $U = \cos^{-1}(-x)/\sqrt{1-x^2}$. (Ordinates of the	010
(9)	Frequency curves)	329
(3)	On the Determination of the Moment-Coefficients. Series and Difference	
	Formulae	332
(4)	On the Determination of the Mode	342
(5)	Determination of Ordinates and Mode by Expansion	346
(6)	Equation for Mode and Antimode $(n = 3)$.	350
(7)	Tables and Models	351
(8)	On the Determination of the "most likely" Value of the Correlation in the	
	Sampled Population	352
(9)	Special Cases of Frequency for n small:	002
	(i) Samples of Two	360
	(ii) Samples of Three	961
	(iii) Samples of Four	901
	(in) General Case of small Samples $n > 4$	309
(10)	Approach of the Distribution of a simulation $x_1 = x_2$	371
(10)	Table for determining the Male field T	371
(11)	Table for determining the mode of the Frequency Distribution for n of	
(10)	considerable size	373
(12)	Table for determining the "most probable" value of the correlation for	
	n of considerable size \ldots \ldots \ldots \ldots \ldots	374
	\sim ($\frac{1}{2}\pi$	
(13)	Construction of Table of $q_n = \int_0^\infty \sin^{n-1}\phi d\phi$	375
	Appendix of Tables A-(379

(1) Introductory. In a paper of 1908* "Student" dealt experimentally with the distribution of the correlation coefficient of small samples, and gave empirical curves—in particular for the case of zero correlation in the sampled population —which have proved remarkably exact. The problem was next considered in 1913 by H. E. Soper† who obtained the mean correlation and the standard deviation of the distribution of correlations to second approximations. Of the

* Biometrika, Vol. vi. p. 302 et seq.

† Biometrika, Vol. 1x. p. 91 et seq.

formulae he gives for \bar{r} and σ_r of the distribution of the correlation r in samples of n from a population of correlation ρ , we have found in practice the most exact are*

and

Soper also by assuming a Pearson curve of limited range + 1 to - 1 of type

$$y = y_0 \left(1 - \frac{x}{a_1}\right)^{m_1} \left(1 + \frac{x}{a_2}\right)^{m_2}$$

deduces the modal value \breve{r} of r as approximately

so that \check{r} would be determined from a knowledge of \bar{r} and $\sigma_r^2 + \bar{r}^2$.

The next step was taken by R. A. Fisher who gave in 1915[†] the actual frequency distribution of r, namely the curve

$$y_n = f_n(r) = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1-r^2)^{\frac{n-4}{2}} \frac{d^{n-2}}{d(r\rho)^{n-2}} \left(\frac{\cos^{-1}(-\rho r)}{\sqrt{1-\rho^2 r^2}}\right) \dots \dots (iv).$$

Except for very low values of n this expression for y_n does not provide a formula from which the ordinates of the frequency curve for r can be readily determined, and as the problem was left by Fisher there were no rapid means of numerically determining either \bar{r} or \check{r} or again σ_r^2 .

Clearly in order to determine the approach to Soper's approximations, and ultimately to the normal curve as n increases we require expressions for the moment coefficients of (iv), and further for practical purposes we require to table the ordinates of (iv) in the region for which n is too small for Soper's formulae to provide adequate approximations. These are the aims of the present paper. It is only fair to state that the arithmetic involved has been of the most strenuous kind and has needed months of hard work on the part of the computers engaged \ddagger . On the other hand the algebra has often been of a most interesting and suggestive character.

(2) On Properties of the Function $U = \cos^{-1}(-x)/\sqrt{1-x^2}$. We have $\frac{dU}{dx} = \frac{1}{1-x^2} + \frac{x \cos^{-1}(-x)}{(1-x^2)^{\frac{31}{2}}}$, or $(1-x^2)\frac{dU}{dx} = 1 + xU$. * See loc. cit. pp. 105 and 107. † Biometrika, Vol. x. p. 507 et seq.

[‡] Besides those whose names are given under the title, we have to thank I. Horwitz for some calculating aid, Ethel M. Elderton and D. Heron for occasional assistance, especially in the experimental part of the work, and lastly but very far from least we have to acknowledge the untiring work of H. Gertrude Jones and Adelaide G. Davin in the construction of the models the beauty and accuracy of which are not more than suggested in the plates.

Biometrika xI

Apply Leibnitz's Theorem and we have

$$(1-x^2)\frac{d^nU}{dx^n} - 2x(n-1)\frac{d^{n-1}U}{dx^{n-1}} - 2\frac{(n-1)(n-2)}{12}\frac{d^{n-2}U}{dx^{n-2}} = x\frac{d^{n-1}U}{dx^{n-1}} + (n-1)\frac{d^{n-2}U}{dx^{n-2}}$$

or,
$$(1-x^2)\frac{d^nU}{dx^n} - x(2n-1)\frac{d^{n-1}U}{dx^{n-1}} - (n-1)^2\frac{d^{n-2}U}{dx^{n-2}} = 0 \quad \dots \dots \dots (v).$$

Put x = 0 and we have

$$\left(\frac{d^n U}{dx^n}\right)_0 = (n-1)^2 \left(\frac{d^{n-2} U}{dx^{n-2}}\right)_0,$$

but clearly $U_0 = \frac{1}{2}\pi$ and $(dU/dx)_0 = 1$.

Hence by Maclaurin's Theorem

$$\frac{\cos^{-1}(-x)}{\sqrt{1-x^2}} = \frac{\pi}{2} \left(1 + \frac{1^2}{2!} x^2 + \frac{3^2 \cdot 1^2}{4!} x^4 + \dots + \frac{(2s-1)^2 (2s-3)^2 \dots 1^2}{(2s)!} x^{2s} + \dots \right) \\ + \left(x + \frac{2^2}{3!} x^3 + \frac{4^2 \cdot 2^2}{5!} x^5 + \dots + \frac{(2s)^2 (2s-2)^2 \dots 2^2}{(2s+1)!} x^{2s+1} + \dots \right) \dots (\text{vi}).$$

We are now in a position to give the successive differentials of U which may be either even or odd. We have for the two cases

$$\begin{split} \frac{d^{2s}}{dx^{2s}} &\left\{ \frac{\cos^{-1}\left(-x\right)}{\sqrt{1-x^{2}}} \right\} \\ &= \frac{\pi}{2} \left(2s-1 \right)^{2} \left(2s-3 \right)^{2} \dots 1^{2} \left\{ 1 + \frac{\left(2s+1\right)^{2}}{2!} x^{2} + \frac{\left(2s+1\right)^{2} \left(2s+3\right)^{2}}{4!} x^{4} + \dots \right\} \\ &+ \left(2s\right)^{2} \left(2s-2 \right)^{2} \dots 2^{2} \left\{ x + \frac{\left(2s+2\right)^{2}}{3!} x^{3} + \frac{\left(2s+2\right)^{2} \left(2s+4\right)^{2}}{5!} x^{5} + \dots \right\} \dots (\text{vii}), \\ \frac{d^{2s-1}}{dx^{2s-1}} &\left\{ \frac{\cos^{-1}\left(-x\right)}{\sqrt{1-x^{2}}} \right\} \\ &= \frac{\pi}{2} \left(2s-1 \right)^{2} \left(2s-3 \right)^{2} \dots 1^{2} \left\{ x + \frac{\left(2s+1\right)^{2}}{3!} x^{3} + \frac{\left(2s+1\right)^{2} \left(2s+3\right)^{2}}{5!} x^{5} + \dots \right\} \\ &+ \left(2s-2 \right)^{2} \left(2s-4 \right)^{2} \dots 2^{2} \left\{ 1 + \frac{\left(2s\right)^{2}}{2!} x^{2} + \frac{\left(2s\right)^{2} \left(2s+2\right)^{2}}{4!} x^{4} + \dots \right\} \dots (\text{vii})^{\text{bis}}, \end{split}$$

the development of the several series being clear.

For calculation of y_{2s} or y_{2s-1} the above series are idle, just as they are when substituted in the equation for $dy_n/dr = 0$ which gives \check{r} . They converge far too slowly to be of use for numerical evaluations. But as we shortly shall show, they are, after certain transformations, most valuable in determining the moment coefficients.

Now

$$y_n = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1-r^2)^{\frac{n-4}{2}} \frac{d^{n-2}U}{dx^{n-2}};$$

multiply (v) by $(1-\rho^2)^{\frac{n+1}{2}}(1-r^2)^{\frac{n-2}{2}}/(\pi (n-1)!),$

H. E. SOPER, A. W. YOUNG, B. M. CAVE, A. LEE, K. PEARSON 331 and we have

$$(1-\rho^{2}r^{2})y_{n+2} - \frac{\rho r (2n-1)\sqrt{1-\rho^{2}}\sqrt{1-r^{2}}}{n-1}y_{n+1} - \frac{(1-\rho^{2})(1-r^{2})}{(n-1)(n-2)}(n-1)^{2}y_{n} = 0,$$

whus $y_{n+2} = \frac{2n-1}{n-1}\kappa_{1}y_{n+1} + \frac{n-1}{n-2}\kappa_{2}y_{n}$ (viii).

t

Here
$$\kappa_1 = \frac{\rho r \sqrt{1-\rho^2} \sqrt{1-r^2}}{1-\rho^2 r^2}$$
, $\kappa_2 = \frac{(1-\rho^2) (1-r^2)}{1-\rho^2 r^2}$

are constant for ρ and r given and thus (viii) enables us to deduce y_{n+2} from y_{n+1} and y_n for a given ρ and r. But by simple differentiation

$$y_{3} = \frac{1-\rho^{2}}{\pi\sqrt{1-r^{2}}} \left(\frac{1}{1-\rho^{2}r^{2}} + \frac{\rho r \cos^{-1}(-\rho r)}{(1-\rho^{2}r^{2})^{\frac{3}{2}}} \right)$$

$$y_{4} = \frac{(1-\rho^{2})^{\frac{3}{2}}}{\pi} \left(\frac{3\rho r}{(1-\rho^{2}r^{2})^{2}} + \frac{(1+2\rho^{2}r^{2})\cos^{-1}(-\rho r)}{(1-\rho^{2}r^{2})^{\frac{5}{2}}} \right) \right\}$$
(ix).

Hence if y_3 and y_4 be calculated for a series of values of r and ρ all higher values may be reached by a repeated use of (viii). The values chosen were: ρ proceeding by $\cdot 1$ from 0 to 1 and r proceeding by $\cdot 05$ from -1 to +1.

The disadvantage of this method of calculating y_n is that, except by independent computing, there is no means of checking accuracy until all the ordinates have been deduced, and any mistake in y_n for a low value of n is perpetuated throughout the series. When all the ordinates have been found, say for n = 25, then the smoothness of these ordinates and the fact that they give the correct total area with a suitable graduation-formula will be checks on the accuracy of the whole system of ordinates. In this manner Table A, p. 379, was calculated.

Another method of approaching the value of y_n is of some advantage. We may take

$$y_n = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (1-r^2)^{\frac{n-4}{2}} \left(\frac{v_n}{(1-\rho^2 r^2)^{n-2}} + \frac{u_n \cos^{-1}(-\rho r)}{(1-\rho^2 r^2)^{\frac{2n-3}{2}}} \right) \dots \dots (\mathbf{x}),$$

where v_n and u_n are functions of ρr in integer positive powers, and if we substitute in (viii) we obtain

22-2

We may write y_n in the form

$$y_{n} = \frac{n-2}{(n-2)!} \frac{(1-\rho^{2})^{\frac{n-1}{2}}}{\pi} (1-r^{2})^{\frac{n-4}{2}} \frac{d^{n-2}}{d(\rho r)^{n-2}} \left\{ \frac{\cos^{-1}(-\rho r)}{\sqrt{1-\rho^{2}}r^{2}} \right\},$$
$$y_{2} = (n-2)_{n-2} \frac{\sqrt{1-\rho^{2}}}{\pi (1-r^{2})} \left(\frac{0}{(1-\rho^{2}r^{2})^{0}} + \frac{\cos^{-1}(-\rho r)}{(1-\rho^{2}r^{2})^{\frac{1}{2}}} \right).$$

or

Hence $v_2 = 0$ and $u_2 = 1$, while y_2 will vanish for all values of r, except $r = \pm 1$ owing to the factor $(n-2)_{n=2}$. Thus (ix) gives us

 $v_3 = 1, \qquad \qquad u_3 = \rho r,$

whence by (xi)

$$\begin{split} v_4 &= 3\rho r, & u_4 &= 1 + 2\rho^2 r^2. \\ v_5 &= 4 + 11\rho^2 r^2, & u_5 &= \rho r \ (9 + 6\rho^2 r^2), \\ v_6 &= \rho r \ (55 + 50\rho^2 r^2), & u_6 &= 9 + 72\rho^2 r^2 + 24\rho^4 r^4, \end{split}$$

and the successive values can be rapidly calculated, much faster than by actually differentiating out (iv). It is, however, shortest to insert the numerical values of ρ and r in (xi) and deduce the v_n 's and u_n 's numerically in succession. (Table A was, however, in the present case deduced from (viii). We did this by direct calculation of the values of

$$\left(\frac{y_n}{n-2}\right)_{n=2} = \frac{\sqrt{1-\rho^2}}{\pi (1-r^2)} \frac{\cos^{-1}(-\rho r)}{(1-\rho^2 r^2)^{\frac{1}{2}}},$$

and y_3 in equation (ix). Equation (viii) then gave us the numerical values of y_4 , y_5 , etc. in succession.)

We may write (x) in the form

$$y_n = \frac{(1-\rho^2)^{\frac{3}{2}}}{\pi} V_n (v_n + u_n U) \dots (xii),$$
$$V_n = \frac{\{(1-\rho^2)(1-r^2)\}^{\frac{n-4}{2}}}{(n-3)! (1-\rho^2 r^2)^{n-2}} \text{ and } U = \frac{\cos^{-1}(-\rho r)}{\sqrt{1-\rho^2 r^2}}$$

where

Here V_n , v_n , u_n and U are symmetrical in ρ and r and accordingly ρ and r can be interchanged. The problem approached this way involves:

- (a) calculating $(1 \rho^2)^{\frac{3}{2}}/\pi$ for various values of ρ ;
- (b) U for various values of ρr ;
- (c) V_n for various values of ρ , r and n;

(d) determining u_n and v_n in succession from (xi) for various values of ρr and n.

Lastly we may use the series for y_n to be given later (see Eqn. (xliii)) which develops y_n in inverse powers of (n-1). Actually we have adopted (viii) for tabling the ordinates of the first 25 curve-series, and the last expansion for verification and higher cases.

(3) On the Determination of the Moment Coefficients. We shall next determine the value of the moment coefficients about r = 0, as origin, and shall deal with the even and odd coefficients independently. Let them be μ'_{2p} and μ'_{2p+1} . Clearly, the total area having been taken as unity:

$$\mu'_{2p} = \int_{-1}^{+1} y_n r^{2p} dr$$
$$= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4}{2}} r^{2p} \frac{d^{n-2}U}{d(\rho r)^{n-2}} dr$$

Now

$$\begin{aligned} r^{2p} &= r^{2p} - (r^2 - 1)^p + (-1)^p (1 - r^2)^p \\ &= pr^{2p-2} - \frac{p (p-1)}{2!} r^{2p-4} + \frac{p (p-1) (p-2)}{3!} r^{2p-6} - \dots + (-1)^p (1 - r^2)^p. \end{aligned}$$

Hence

$$\mu'_{2p} = p\mu'_{2p-2} - \frac{p(p-1)}{2!}\mu'_{2p-4} + \frac{p(p-1)(p-2)}{3!}\mu'_{2p-6} - \dots + (-1)^{p}\chi_{2p} \quad (\text{xiii}),$$

$$(1 - \rho^{2})^{\frac{n-1}{2}} \int_{-1}^{+1} (1 - p)^{\frac{n-4+2p}{2}} d^{n-2}U d$$

where

$$\chi_{2p} = \frac{\gamma}{\pi (n-3)!} \int_{-1}^{-1} (1-r^2) \quad 2 \quad \frac{1}{d(\rho r)^{n-2}} \, dr.$$

Thus using $(vii)^{bis}$ on the assumption that n is odd and remembering that odd powers of r will now disappear we reach:

$$\chi_{2p} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} (n-3)^2 (n-5)^2 \dots 2^2 \left(i_0 + \frac{(n-1)^2}{2!} \rho^2 i_2 + \frac{(n+1)^2}{4!} \rho^4 i_4 + \dots \right),$$

where $i_{2m} = \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} r^{2m} dr.$

where

$$n = \int_{-1}^{+1} (1 - r^2)^{\frac{n-4+2p}{2}} r^{2m} dr$$

Now we may write $r = \cos \phi$, so that

$$i_{2m} = 2 \int_{0}^{\frac{\pi}{2}} \sin^{n+2p-3} \phi \cos^{2m} \phi \, d\phi,$$

and we have

$$i_{2m} = \frac{2m-1}{n+2p-3+2m} i_{2m-2}$$
(xiv)

Thus

$$\begin{split} \chi_{2p} &= \frac{\left(1-\rho^2\right)^{\frac{n-1}{2}}}{\pi \ (n-3)!} \ (n-3)^2 \ (n-5)^2 \ \dots \ 2^2 i_0 \left(1+\frac{(n-1)^2}{2!} \rho^2 \frac{1}{n-1+2p} \right. \\ &\qquad \qquad + \frac{\left(n+1\right)^2 (n-1)^2}{4!} \rho^4 \frac{1}{n-1+2p} \ \frac{3}{n+1+2p} + \dots \right) \\ &= \frac{\left(1-\rho^2\right)^{\frac{n-1}{2}}}{\pi \ (n-3)!} \ (n-3)^2 \ (n-5)^2 \ \dots \ 2^2 i_0 F \left(\frac{n-1}{2}, \ \frac{n-1}{2}, \ \frac{n-1}{2} + p, \ \rho^2\right), \end{split}$$

where F as usual denotes the hypergeometrical series. But by a well-known transformation due to Euler

$$F(a, \beta, \gamma, x) = (1-x)^{\gamma-a-\beta} F(\gamma-a, \gamma-\beta, \gamma, x) \quad \dots \dots (xv),$$

and accordingly

$$F\left(\frac{n-1}{2}, \frac{n-1}{2}, \frac{n-1}{2} + p, \rho^{2}\right) = (1-\rho^{2})^{p-\frac{n-1}{2}}F\left(p, p, \frac{n-1}{2} + p, \rho^{2}\right)$$

or $\chi_{2p} = \frac{(1-\rho^{2})^{p}}{\pi (n-3)!}(n-3)^{2}(n-5)^{2}\dots 2^{2}i_{0} \cdot F\left(p, p, \frac{n-1}{2} + p, \rho^{2}\right)$

Now

is known

A

and

to be
$$= \frac{(n-2)(n-4)\dots 1}{(n-1)(n-3)\dots 2}\pi$$
(xvi),

if n be odd as supposed above. Thus finally we have

$$\chi_{2p} = (1 - \rho^2)^p \frac{q_{n+2p-2}}{q_{n-2}} F\left(p, \ p, \ \frac{n-1}{2} + p, \ \rho^2\right) \dots (xvii).$$

Table of $q_n = \int_0^{\frac{\pi}{2}} \sin^{n-1}\phi d\phi$ from $n = 1$ to $n = 105$ is given on p. 377 below

Now (xvii) has only been proved for n odd. If n be even we must take the first series of (vii) and this gives

$$\chi_{2p} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \frac{\pi}{2} (n-3)^2 (n-5)^2 \dots 1^2 i_0' \left(1 + \frac{(n-1)^2}{2!} \rho^2 \frac{1}{n+2p-1} + \frac{(n+1)^2 (n-1)^2}{4!} \rho^4 \frac{1}{n+2p-1} \frac{3}{n+2p+1} + \dots\right),$$

$$i_0' = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{n+2p-3} \phi \, d\phi = 2q_{n+2p-2}$$

where

and

$$= 2 \int_{0}^{2} \sin^{n+2p-3} \phi \, d\phi = 2q_{n+2p-2}$$

$$(n-2)(n-4) = 2$$

 $2q_n = \frac{(n-2)(n-4)\dots 2}{(n-1)(n-3)\dots 3} \cdot 2\dots (xviii),$

since n is even. Thus

$$\chi_{2p} = (1-\rho^2)^{\frac{n-1}{2}} \frac{q_{n+2p-2}}{q_{n-2}} F\left(\frac{n-1}{2}, \frac{n-1}{2}, \frac{n-1}{2} + p, \rho^2\right)$$
$$= (1-\rho^2)^p \frac{q_{n+2p-2}}{q_{n-2}} F\left(p, p, \frac{n-1}{2} + p, \rho^2\right) \dots (xix)$$

or (xvii) holds whether n be even or odd.

As particular cases we have for p = 1

or
$$\sigma_r^2 = 1 - \bar{r}^2 - \frac{n-2}{n-1} (1-\rho^2) \left(1 + \frac{2^2}{n+1} \frac{\rho^2}{2} + \frac{2^2 \cdot 4^2}{1 \cdot 2 \cdot (n+1) (n+3)} \frac{\rho^4}{4} + \frac{2^2 \cdot 4^2 \cdot 6^2}{1 \cdot 2 \cdot 3 \cdot (n+1) (n+3) (n+5)} \frac{\rho^6}{8} + \dots \right)$$
.....(xx)^{bis},

and again for p = 2

$$\begin{split} \mu_4' &= \mu_4 + 4\mu_3' \mu_1' - 6\mu_2' \mu_1'^2 + 3\mu_1'^4 \\ &= 2\mu_2' - 1 + \frac{n (n-2)}{(n+1) (n-1)} (1-\rho^2)^2 \left\{ 1 + \frac{4^2}{n+3} \frac{\rho^2}{2} + \frac{4^2 \cdot 6^2}{1 \cdot 2 (n+3) (n+5)} \frac{\rho^4}{4} \right. \\ &+ \frac{4^2 \cdot 6^2 \cdot 8^2}{1 \cdot 2 \cdot 3 (n+3) (n+5) (n+7)} \frac{\rho^6}{8} + \ldots \right\} \dots \dots (xxi). \end{split}$$

The series in (xx) and (xxi) for n = 25 and upwards converge with sufficient rapidity to determine μ_2' and μ_4' rapidly and therefore with accurate values for μ_1' and μ_3' will give μ_2 or σ_r^2 and μ_4 , and thus provide the determination of β_2 .

We will now determine μ'_{2p+1} in like manner. We have

$$\mu'_{2p+1} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4}{2}} r^{2p+1} \frac{d^{n-2}U}{d (\rho r)^{n-2}} dr,$$

but

$$\begin{aligned} r^{2p+1} &= r \left\{ r^{2p} - (r^2 - 1)^p + (-1)^p \left(1 - r^2\right)^p \right\} \\ &= r \left\{ pr^{2p-2} - \frac{p \left(p - 1\right)}{2!} r^{2p-4} + \frac{p \left(p - 1\right) \left(p - 2\right)}{3!} r^{2p-6} - \dots \right. \\ &+ (-1)^p \left(1 - r^2\right)^p \right\}. \end{aligned}$$

Hence μ'_{2p} .

where

$$\chi_{2p+1} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} r \frac{d^{n-2}U}{d (r\rho)^{n-2}} dr$$
$$= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \frac{1}{n-2+2p} \int_{-1}^{+1} \frac{d^{n-2}U}{d (r\rho)^{n-2}} d (-(1-r^2)^{\frac{n-2+2p}{2}}),$$

or integrating by parts

$$=\frac{\rho\left(1-\rho^{2}\right)^{\frac{n-1}{2}}}{\pi\left(n-3\right)!\left(n-2+2p\right)}\int_{-1}^{+1}\left(1-r^{2}\right)^{\frac{n-2+2p}{2}}\frac{d^{n-1}U}{d\left(r\rho\right)^{n-1}}dr.$$

Assuming n odd we must keep the first series in the value of $\frac{d^{n-1}U}{d(r\rho)^{n-1}}$, and we reach

$$\begin{split} \chi_{2p+1} &= \frac{\rho \left(1-\rho^2\right)^{\frac{n-1}{2}}}{\pi \left(n-3\right)! \left(n-2+2p\right) \frac{\pi}{2}} \left(n-2\right)^2 \left(n-4\right)^2 \dots 1^2 \cdot 2q_{n+2p} \\ &\times \left(1+\frac{n^2}{2!}\rho^2 \frac{1}{n+1+2p} + \frac{n^2 \left(n+2\right)^2}{4!} \frac{1}{n+1+2p} \frac{3}{n+3+2p} \rho^4 + \text{etc.} \dots \right) \\ &= \frac{\rho \left(1-\rho^2\right)^{\frac{n-1}{2}}}{2 \left(n-3\right)! \left(n-2+2p\right)} 2q_{n+2p} \left(n-2\right)^2 \left(n-4\right)^2 \dots 1^2 \\ &\times F\left(\frac{n}{2}, \frac{n}{2}, \frac{n+1}{2}+p, \rho^2\right) \\ &= \frac{\rho \left(1-\rho^2\right)^p \left(n-2\right) q_{n+2p}}{n-2+2p} F\left(p+\frac{1}{2}, p+\frac{1}{2}, \frac{n+1}{2}+p, \rho^2\right) \dots (xxiii), \end{split}$$

if we use Euler's reduction formula, and note that for n odd, or n - 1 even

$$2q_{n-1} = \frac{(n-3)(n-5)\dots 2}{(n-2)(n-4)\dots 1} \cdot 2.$$

If we start with n even we reach an absolutely identical formula by a different route. Thus we have

$$\mu'_{2p+1} = p\mu'_{2p-1} - \frac{p(p-1)}{2!} \mu'_{2p-3} + \frac{p(p-1)(p-2)}{3!} \mu'_{2p-5} - \dots + (-1)^p \frac{\rho(1-\rho^2)^p (n-2)}{n-2+2p} \frac{q_{n+2p}}{q_{n-1}} F\left(p + \frac{1}{2}, p + \frac{1}{2}, \frac{n+1}{2} + p, \rho^2\right) \dots(xxiv).$$

Taking p in succession equal to zero and to unity we find

$$\begin{split} \mu_{1}' &= \bar{r} = \rho \, \frac{q_{n}}{q_{n-1}} \Big(1 + \frac{1^{2}}{n+1} \frac{\rho^{2}}{2} + \frac{1^{2} \cdot 3^{2}}{1 \cdot 2 \cdot (n+1) (n+3)} \frac{\rho^{4}}{4} \\ &+ \frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{3! (n+1) (n+3) (n+5)} \frac{\rho^{6}}{8} + \dots \Big) \dots \dots (xxv), \end{split}$$

$$\mu_{3}' &= \mu_{3} + 3\mu_{2}' \bar{r} - 2\bar{r}^{3} = \bar{r} - \rho \, (1 - \rho^{2}) \frac{q_{n+2}}{q_{n-1}} \frac{n-2}{n} \\ &\times \Big(1 + \frac{3^{2}}{n+3} \frac{\rho^{2}}{2} + \frac{3^{2} \cdot 5^{2}}{1 \cdot 2 (n+3) (n+5)} \frac{\rho^{*}}{4} + \frac{3^{2} \cdot 5^{2} \cdot 7^{2}}{3! (n+3) (n+5) (n+7)} \frac{\rho^{*}}{8} + \dots \Big) \\ &\dots \dots \dots \dots (xxvi). \end{split}$$

Equations (xxv) and (xxvi) provide the values of the odd moment coefficients about zero and this in fairly rapidly converging series. From them we can deduce the value about the mean μ_3 and thus find the fundamental β_1 . Table X, p. 377, again gives the requisite values of q_n for the range n = 1 to 105.

Illustration. Samples of 25 are taken out of a population in which two variates have the correlation $\rho = \cdot 6$. Determination of the nature of the distribution of r in these samples.

Here n = 25, and with $\rho = 6$ we find from (xx), (xxi), (xxv) and (xxvi) the values*

,	$\mu_1' = \bar{r} = .591,825,$	$\mu_{2} = \cdot 368,739,$
	$\mu_{3}' = \cdot 238,293,$	$\mu_4' = \cdot 158,510.$
Further	$\mu_2 = \cdot 018,482,$	$\sigma_r = .135,950,$
	$\mu_3 =001,812,380,$	$\mu_4 = \cdot 001,279,141,$
giving	$\beta_1 = \cdot 520,265,$	$\beta_2 = 3.744,573.$

The distribution is thus very far from normal.

Hence by the formula †:

Distance from mean to mode =
$$\frac{\sigma_r \sqrt{\beta_1 (\beta_2 + 3)}}{2(5\beta_2 - 6\beta_1 - 9)}$$
.....(xxvii).

we find

$$\vec{r} - \bar{r} = .050,094,$$

 $\vec{r} = .64192.$

We shall see later that the actual value is

 $\vec{r} = \cdot 64194.$

or the approximation is very close.

The skewness is given by

$$Sk. = (\breve{r} - \bar{r})/\sigma_r = \cdot 36847,$$

thus indicating that there is but little approach to normality.

Fig. 1, p. 338, shows the excellent fit of a Pearson curve of Type II to the distribution. The equation is

$$y = \cdot 31004 \left(1 - \frac{x}{\cdot 31075} \right)^{5 \cdot 7536} \left(1 + \frac{x}{9 \cdot 64157} \right)^{178 \cdot 5135}$$

We see that when n = 25, Pearson's curves—fitted by moments not by range adequately describe the frequencies, but there is still no real approach to a Gaussian distribution.

The series-expansions which have been given for the determination of the moments are of very little service when n is less than 25. We have therefore to consider formulae for deducing in succession the moments about r = 0 for n = 5to n = 25.

* The values were in every case worked out to nine places of decimals.

[†] Pearson: Mathematical Contributions to the Theory of Evolution, XII, p. 7. Drapers' Company Research Memoirs, Biometric Series, Cambridge University Press.

FIG. 1. Comparison of Values of Frequency Ordinates for n=25, $\rho=0.6$ as given by complete theory and by a Pearson Skew Curve of Frequency. The dots mark true ordinates.

$$\bar{r}_{n+2} = \rho \frac{q_{n+2}}{q_{n+1}} \left(1 + \frac{1^2}{n+3} \frac{\rho^2}{2} + \dots + \frac{1}{s! (n+3) (n+5) - (n+2s+1)} \frac{\rho^{2s}}{2^s} + \dots \right),$$

$$\bar{r}_n = \rho \frac{q_n}{q_{n-1}} \left(1 + \frac{1^2}{n+1} \frac{\rho^2}{2} + \dots + \frac{1^2 \cdot 3^2 \dots (2s-1)^2}{s! (n+1) (n+3) \dots (n+2s-1)} \frac{\rho^{2s}}{2^s} + \dots \right),$$

$$\bar{r}_n = \rho \frac{q_{n+2}}{q_{n+2}} \left(- \frac{n}{n} - \left(1 + \frac{1^2}{n+1} - \frac{\rho^2}{2} + \dots + \frac{1^2 \cdot 2^2}{n+1} + \frac{1^2 \cdot 2^2}{n+1} + \frac{\rho^2}{2} + \dots + \frac{1^2 \cdot 2^2}{n+1} + \frac{\rho^2}{n+1} + \frac{\rho^2}{2} + \dots + \frac{\rho^2}{n+1} + \frac{\rho^2}{2} + \dots \right),$$

$$\begin{split} \bar{r}_{n+2} - \bar{r}_n &= \rho \, \frac{q_{n+2}}{q_{n-1}} \left\{ \frac{n}{n-1} \left(1 + \frac{1^2}{n+3} \frac{\rho^2}{2} + \dots \right. \\ &+ \frac{1^2 \cdot 3^2 \dots (2s-1)^2}{s! \, (n+3) \, (n+5) \dots (n+2s+1)} \frac{\rho^{2s}}{2^s} + \dots \right) \\ &- \frac{n+1}{n} \left(1 + \frac{1^2}{n+1} \frac{\rho^2}{2} + \dots + \frac{1^2 \cdot 3^2 \dots (2s-1)^2}{s! \, (n+1) \, (n+3) \dots (n+2s-1)} \frac{\rho^{2s}}{2^s} + \dots \right) \right\}, \end{split}$$
 since
$$\begin{aligned} \frac{q_{n-1}}{2} &= \frac{n}{2}. \end{split}$$

since

$$\frac{q_{n-1}}{q_{n+1}} = \frac{n}{n-1}$$

The general term is therefore

$$\frac{1}{(n-1)(n-2)} \rho \frac{q_{n+2}}{q_{n-1}} \frac{n-2}{n} \left(\frac{n^2(n+1)}{n+2s+1} - (n^2-1) \right) \\ \times \frac{1^2 \cdot 3^2 \dots (2s-1)^2}{s!(n+1)(n+3)\dots(n+2s-1)} \frac{\rho^{2s}}{2^s}.$$

Now in (xxvi) we have seen that

$$\begin{split} \bar{r}_n - \mu'_{3,n} &= \rho \left(1 - \rho^2\right) \frac{q_{n+2}}{q_{n-1}} \frac{n-2}{n} \left\{ 1 + \frac{3^2}{n+3} \frac{\rho^2}{2} + \dots \right. \\ &+ \frac{3^2 \cdot 5^2 \dots (2s+1)^2}{s! (n+3) (n+5) \dots (n+2s+1)} \frac{\rho^{2s}}{2^s} + \dots \right\}, \end{split}$$

and the general term is

This result expresses the mean for samples of n + 2 in terms of the mean for samples of n and the third moment of samples of n.

Next let

$$\chi_{2p,n} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} \frac{d^{n-2}U}{d (\rho r)^{n-2}} dr$$
$$= \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} f_{p,n}.$$

Now integrate $f_{p, n}$ by parts *twice*:

$$\begin{split} f_{p,n} &= \frac{n-4+2p}{\rho} \int_{-1}^{+1} r \left(1-r^2\right)^{\frac{n-6+2p}{2}} \frac{d^{n-3}U}{d\left(\rho r\right)^{n-3}} dr \\ &= \frac{n-4+2p}{\rho} \int_{-1}^{+1} \left\{ \left(n-6+2p\right) \left(1-r^2\right)^{\frac{n-8+2p}{2}} - \left(n-6+2p+1\right) \left(1-r^2\right) \right\}^{\frac{n-6+2p}{2}} \times \frac{d^{n-4}U}{d\left(\rho r\right)^{n-4}} dr \\ &= \frac{n-4+2p}{\rho^2} \left\{ \left(n-6+2p\right) f_{p-1,n-2} - \left(n-6+2p+1\right) f_{p,n-2} \right\}. \end{split}$$

Or returning to the $\chi_{2p,n}$ notation

$$\chi_{2p,n} = \frac{1-\rho^2}{\rho^2} \frac{n-4+2p}{(n-3)(n-4)} \{ (n-6+2p)\chi_{2p-2,n-2} - (n-6+2p+1)\chi_{2p,n-2} \}.$$

As special cases put p = 1 and 2, and change n to n + 2. We have*

$$\chi_{2,n+2} = \frac{1-\rho^2}{\rho^2} \cdot \frac{n}{n-1} \cdot \left\{ \chi_{0,n} - \frac{n-1}{n-2} \chi_{2,n} \right\} \dots (xxix),$$

$$\chi_{4,n+2} = \frac{1-\rho^2}{\rho^2} \cdot \frac{n+2}{n-1} \cdot \left\{ \frac{n}{n-2} \chi_{2,n} - \frac{n+1}{n-2} \chi_{4,n} \right\} \dots (xxx).$$

$$\chi_{0,n} = 1 \quad \text{and} \quad \chi_{2,n} = 1 - \mu'_{2,n},$$

 \mathbf{But}

$$\chi_{4,n} = 1 - 2\mu'_{2,n} + \mu'_{4,n}.$$

Accordingly

$$\mu'_{2,n+2} = 1 - \frac{1-\rho^2}{\rho^2} \frac{n}{n-2} \left(\mu'_{2,n} - \frac{1}{n-1} \right) \dots (xxxi),$$

which can be verified directly from (xx) or $(xx)^{bis}$. Again instead of working with the series for $\chi_{4,n+2}$ above (xxx), we can replace it by one involving the moments about r = 0, directly:

$$\mu'_{4,n+2} = 1 - \frac{1-\rho^2}{\rho^2} \left\{ \frac{(n+1)(n+2)}{(n-1)(n-2)} \mu'_{4,n} + \frac{n^2 - 6n - 4}{(n-1)(n-2)} \mu'_{2,n} - \frac{1}{n-1} \right\}$$
.....(xxxii)

* The process of integrating by parts shows that we must have n > 2.

It remains to determine the formula for $\mu'_{3,n+2}$. We have

$$\chi_{2p+1,n} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \int_{-1}^{+1} (1-r^2)^{\frac{n-4+2p}{2}} r \frac{d^{n-2}U}{d (r\rho)^{n-2}} dr$$

whence by double integration by parts to reduce the U differential coefficient we obtain

$$\chi_{2p+1,n} = \frac{1-\rho^2}{\rho^2} \frac{n-4+2p}{(n-3)(n-4)} \left\{ (n-6+2p) \chi_{2p-1,n-2} - \frac{n-4+2p+1}{n-4} \chi_{2p+1,n-2} \right\}.$$

Putting p = 1 and changing n to n + 2 we have

$$\chi_{3,n+2} = \frac{1-\rho^2}{\rho^2} \frac{n}{n-1} \left\{ \chi_{1,n} - \frac{n+1}{n-2} \chi_{3,n} \right\} \quad \dots \quad (xxxiii).$$

This may again be read as a formula for $\mu'_{3,n+2}$:

$$\mu'_{3,n+2} = \bar{r}_n \left(1 - \frac{n}{n-1} \frac{1-\rho^2}{\rho^2} \right) + \frac{\bar{r}_n - \mu'_{3,n}}{(n-1)(n-2)} \left(1 + n(n+1) \frac{1-\rho^2}{\rho^2} \right)$$
(xxxiv).

Starting with the values of the μ 's for n = 3, 4, 25 and 26, the moment coefficients about r = 0 have been determined for n = 5 to 25 in succession. As controls the values for n = 20 had already been determined and those for n = 10were also obtained at a very considerable expenditure of labour from the very slowly converging series of Formulae (xx), (xxi), (xxv) and (xxvi). The initial values of the moment coefficients (i.e. those for n = 3, 4, 25 and 26) had to be calculated generally to 15 and sometimes to 20 significant figures, owing to the numerical factors in (xxviii), (xxxi), (xxxii) and (xxxiv) being frequently greater than unity, and thus errors in the last figure being repeatedly multiplied. According to the special value of ρ , it was found best sometimes to deduce moment coefficients of n + 2 from those for n, and sometimes those of n from those for n + 2, i.e. to work up from 3 and 4, or down from 25 and 26. It seems unnecessary to enter at length here into the many difficulties that arose in the course of these calculations. We think they have all been successfully surmounted and that our final values may be trusted to the figures actually recorded in the tables. We thus found the moment coefficients and from them the values of β_1 and β_2 for the ten values of ρ from 0 to $\cdot 9$, and for the values of n, 2 to 25, 50, 100 and 400. Diagram I shows that our 270 frequency curves are fairly well distributed over the most frequently occurring portion of the β_1 , β_2 plane. Now our view is that the constants β_1 , β_2 describe adequately for statistical purposes the bulk of the usual frequencies distributions. But we have provided tables of the values of the ordinates for the above 270 curves. Hence by interpolation it will now be possible to determine rapidly ordinates which will graduate with reasonable accuracy any frequency distribution whatever quite apart from the idea of sampling normally correlated variates*.

* Francis Galton frequently insisted on the importance of forming Tables of frequency ordinates, which would graduate any frequency distribution in the β_1 , β_2 plane. A scheme for covering this plane

The diagram referred to on p. 341 will appear with Part II of the paper.

In order to make use of our ordinates for graduating frequency curves we must express the distance from our origin to our mean (i.e. from r=0 to $r=\bar{r}_n$) in terms of the standard deviation, and further the unit of argument of the abscissae, i.e. 05 in r. also in terms of the standard deviation. Our interpolated frequency ordinates (reduced of course, to the size of the actual population) will then have to be plotted to intervals of $0.5\sigma_g/\sigma_r$, the origin being $\bar{r}_n\sigma_g/\sigma_r$ from the mean of the graduated data, where σ_q is the standard deviation of the graduated data. Care must be taken to so choose the axis of abscissae of the graduated data that the sign of μ_3 is the same in the graduated material and the graduating frequencies. Table C gives the distance from the mean to the origin of coordinates in each case and also the abscissal unit for plotting both in terms of the standard deviation.

(4) On the Determination of the Mode. Differentiating (iv) we have

$$\frac{dy_n}{dr} = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi (n-3)!} \left\{ (1-r^2)^{\frac{n-4}{2}} \rho \frac{d^{n-1}U}{d(r\rho)^{n-1}} - r(n-4)(1-r^2)^{\frac{n-6}{2}} \frac{d^{n-2}U}{d(r\rho)^{n-2}} \right\}$$

Hence the mode \vec{r} is given by

$$0 = (1 - \breve{r}^2) \rho^2 \left(\frac{d^{n-1}U}{d (r\rho)^{n-1}} \right) - \breve{r}\rho \frac{d^{n-2}U}{d (r\rho)^{n-2}} (n-4),$$

where \check{U} is U with $\check{\rho}$ put for $r\rho$.

Now (xxxv) is by no means easy to solve adequately, for if we solve it by approximation, $r = \rho$ and $\check{\rho} = \rho^2$ is not sufficiently close for an effective first approximation, especially when ρ differs considerably from zero. We have indeed from (v) the relation

$$(1-\check{\rho}^4)\frac{d^{n-1}\check{U}}{d\,(\check{\rho}^2)^{n-1}}-\check{\rho}^2\,(2n-3)\,\frac{d^{n-2}\check{U}}{d\,(\check{\rho}^2)^{n-2}}-(n-2)^2\,\frac{d^{n-3}\check{U}}{d\,(\check{\rho}^2)^{n-3}}=0 \quad (\tt{xxxvi}),$$

and this might be combined with (xxxv) to deduce in succession relations between lower pairs of differential coefficients, till we ultimately reach a relation between $d\breve{U}/d\breve{\rho}^2$ and \breve{U} , but the process is too laborious except for very low values of n.

Fisher has outlined another method of approaching the mode*. It is easy to see that

$$\begin{aligned} \frac{\cos^{-1}(-x)}{\sqrt{1-x^2}} &= \frac{2}{\sqrt{1-x^2}} \left(\tan^{-1} \frac{1-x}{\sqrt{1-x^2}} - \tan^{-1} \frac{-x}{\sqrt{1-x^2}} \right) \\ &= \frac{2}{\sqrt{1-x^2}} \left[\tan^{-1} \left(\frac{\xi - x}{\sqrt{1-x^2}} \right) \right]_0^1 \\ &= 2 \int_0^1 \frac{d\xi}{(\xi - x)^2 + 1 - x^2} = 2 \int_0^1 \frac{d\xi}{\xi^2 - 2x\xi + 1} , \end{aligned}$$

with a series of Pearson-curves has been long under consideration, but the immense labour of calculating the ordinates of 400 to 500 curves has so far prevented the actualisation of this idea. The present ordinate-tables go some way to supply the need Galton pointed out.

* Biometrika, Vol. x. p. 520.

or, if
$$\xi = e^{-x}$$
, $= \int_{0}^{\infty} \frac{dz}{\cosh z - x} = \int_{0}^{\infty} \frac{dz}{\cosh z - \rho r}$, if $x = \rho r$.
But $y_{n} = \frac{(1 - \rho^{2})^{\frac{n-1}{2}}}{\pi (n-3)!} (1 - r^{2})^{\frac{n-4}{2}} \frac{d^{n-2}}{d(\rho r)^{n-2}} \left(\frac{\cos^{-1}(-\rho r)}{\sqrt{1 - \rho^{2}r^{2}}}\right)$
 $= \frac{(1 - \rho^{2})^{\frac{n-1}{2}}}{\pi (n-3)!} (1 - r^{2})^{\frac{n-4}{2}} \frac{d^{n-2}}{d(\rho r)^{n-2}} \int_{0}^{\infty} \frac{dz}{\cosh z - \rho r}$
 $= (n-2) \frac{(1 - \rho^{2})^{\frac{n-1}{2}}}{\pi} (1 - r^{2})^{\frac{n-4}{2}} \int_{0}^{\infty} \frac{dz}{(\cosh z - \rho r)^{n-1}} \dots (xxxvii),$
 $= \frac{(n-2)(1 - \rho^{2})^{\frac{n-1}{2}}}{\pi} (1 - r^{2})^{\frac{n-4}{2}} I_{n-1}, \text{ say} \dots (xxxvii)^{\text{bis}}.$

Substituting in Eqn. (viii) we find

$$n (1 - \rho^2 r^2) I_{n+1} = (2n - 1) \rho r I_n + (n - 1) I_{n-1} \dots (xxxviii)$$

as the reduction formula for the I_n 's.

Similarly, if $I'_{n-1} = \int_0^\infty \frac{dz}{(\cosh z - \rho_0^2)^{n-1}}$, then $n (1 - \rho_0^4) I'_{n+1} = (2n - 1) \rho_0^2 I'_n + (n - 1) \rho_0^2 I'_n$

$$n (1 - \rho_0^4) I'_{n+1} = (2n - 1) \rho_0^2 I'_n + (n - 1) I'_{n-1} \dots (\text{xxxviii})^{\text{bis}}$$

Now using value $(xxxvii)^{bis}$ for y_n , the equation for the mode is

$$(n-4) \, \breve{r} \breve{I}_{n-1} = \rho \, (1-\breve{r}^2) \, (n-1) \, \breve{I}_n,$$

or, if as before, $\check{\rho}^2 = \rho \check{r}$, we have:

find

$$(n-4)\,\check{\rho}^2\check{I}_{n-1}=(\rho^2-\check{\rho}^4)\,(n-1)\,\check{I}_n.....(xxxix)$$
 This combined with

$$n (1 - \check{\rho}^4) \check{I}_{n+1} = (2n-1) \check{\rho}^2 \check{I}_n + (n-1) \check{I}_{n-1} \dots (xl),$$

the mode

should determine the mode. Now assume $\check{\rho}^2 = \rho_0^2 + \epsilon$, where ρ_0^2 is some first approximation to $\check{\rho}^2$, then we

$$\epsilon = -\frac{(n-4)\,\rho_0{}^2 I'_{n-1} - (n-1)\,(\rho^2 - \rho_0{}^4)\,I_n{'}}{(n-4)\,I'_{n-1} + (n-1)\,(n-2)\,\rho_0{}^2 I_n{'} - (n-1)\,(\rho^2 - \rho_0{}^4)\,I'_{n+1}} \dots \dots (\text{xli}).$$

If we had obtained an approximation ρ_0^2 to $\check{\rho}^2$, we could start with

$$I_{1}' = \frac{\cos^{-1}(-\rho_{0}^{2})}{\sqrt{1-\rho_{0}^{4}}} \text{ and } I_{2}' = \frac{1}{1-\rho_{0}^{4}} + \frac{\rho_{0}^{2}\cos^{-1}(-\rho_{0}^{2})}{(1-\rho_{0}^{4})^{\frac{3}{2}}} \dots (\text{xlii}),$$

and by aid of $(xxxviii)^{bis}$ determine the I''s in succession. If $E_n = I_n/I_{n-1}$ we can put our results in the forms (xliii) and (xliv) below, and calculate successive E's:

$$\epsilon = -\frac{\left\{\frac{(n-4)\rho_0^2}{E_n} - (n-1)(\rho^2 - \rho_0^4)\right\}}{\frac{n-4}{E_n} + (n-1)(n-2)\rho_0^2 - n(n-1)(\rho^2 - \rho_0^4)E_{n+1}} \dots (\text{xliii}),$$

 $(n-1) (1-\rho_0^4) E_n = (2n-3) \rho_0^2 + \frac{n-2}{E_{n-1}}$ (xliv).

But even this would be laborious had we to find successive values of E_n from (xliv). Actually, if n be moderately large, E_n and E_{n-1} tend to equality fairly rapidly. For example the following are the values of E_n for $\rho_0 = \cdot 6$:

 $I_1 = 2.078,4173, I_2 = 1.873,8688$ and therefore $E_2 = .901,5845$.

$ \begin{array}{c} E_2\\ E_3\\ E_4\\ E_5\\ E_6\\ E_7\\ E_8 \end{array} $	$\cdot 901,5845$ 1 $\cdot 257,5588$ 1 $\cdot 183,5106$ 1 $\cdot 451,8703$ 1 $\cdot 377,5430$ 1 $\cdot 453,2879$ 1 $\cdot 445,7342$	$E_{9} \\ E_{10} \\ E_{11} \\ E_{12} \\ E_{13} \\ E_{14} \\ E_{15}$	1.470,8511 1.475,5703 1.486,5966 1.492,1848 1.498,5199 1.503,1022 1.507,3770	$\begin{matrix} E_{16} \\ E_{17} \\ E_{18} \\ E_{19} \\ E_{20} \\ E_{21} \\ E_{22} \end{matrix}$	1.511,0031 1.514,1874 1.516,9985 1.519,5018 1.521,7436 1.523,7636 1.525,5928	E ₂₃ E ₂₄ E ₂₅ E ₂₆ E' E''' E'''	$\begin{array}{r} 1\cdot527,2571\\ 1\cdot528,7778\\ 1\cdot530,1728\\ 1\cdot531,4570\\ \hline 1\cdot529,7263\\ 1\cdot531,0459\\ 1\cdot530,1488\end{array}$
--	--	---	--	--	--	--	---

Clearly E_n and E_{n-1} approach equality. Now put $E_{25} = E_{24}$ for n = 25 in (xliv) and we have for $\rho_0 = \cdot 6$

 $20 \cdot 8896E'^2 - 16 \cdot 92E' - 23 = 0,$

which gives for the root required

$$E' = 1.529,7263.$$

But we might also have made $E_{25} = E_{26}$ and so reached

$$21 \cdot 7600 E''^2 - 17 \cdot 64 E'' - 24 = 0,$$
$$E'' = 1 \cdot 531,0459.$$

which gives

and

It is better therefore in finding E_n to equate E_n and E_{n-1} than E_n and E_{n+1} .

A still closer approximation may be found by noting that

$$E_n - E' = \epsilon = E_{n+1} - E''$$
, nearly,

where ϵ is very small. Hence since

$$n (1 - \rho_0^4) E_{n+1} E_n - (2n - 1) \rho_0^2 E_n - (n - 1) = 0,$$

we have

$$\begin{aligned} \epsilon &= \frac{(n-1) + (2n-1)\rho_0{}^2 E' - n (1-\rho_0{}^4) E' E''}{n (1-\rho_0{}^4) (E' + E'') - (2n-1)\rho_0{}^2}, \\ E''' &= E' + \epsilon = \frac{(n-1) + n (1-\rho_0{}^4) E'{}^2}{n (1-\rho_0{}^4) (E' + E'') - (2n-1)\rho_0{}^2} \dots (xlv). \end{aligned}$$

or,

For the case of $\rho_0 = \cdot 6$ and n = 25 we find

 $E^{\prime\prime\prime} = 1.530,1488,$

and $E_{25} - E''' = .000,0240$, a close agreement. As a matter of fact as we only use E_n in a small term the approximation E' is generally quite sufficient.

In the above method all turns on finding a good value of ρ_0^2 , i.e. a first approximation to the value of the product of ρ and \breve{r} . This may be obtained in either of the following ways:

First, choose the values of ρ_0^2 and E' to satisfy the simultaneous equations

$$\frac{(n-4)\rho_0^2}{E'} - (n-1)(\rho^2 - \rho_0^4) = 0,$$

(n-1)(1-\rho_0^4) E' = (2n-3)\rho_0^2 + \frac{n-2}{E'}.

and

Or, we have for ρ_0 the equation

$$\frac{(n-1)\left(n-4\right)\left(1-\rho_{0}^{4}\right)\rho_{0}^{2}}{(n-1)\left(\rho^{2}-\rho_{0}^{4}\right)} = (2n-3)\rho_{0}^{2} + \frac{(n-2)\left(n-1\right)\left(\rho^{2}-\rho_{0}^{4}\right)}{(n-4)\rho_{0}^{2}},$$

which writing $\rho_0^4 = z$ gives us

$$(n-4)^2 (1-z) z = (2n-3) (n-4) z (\rho^2 - z) + (n-2) (n-1) (\rho^2 - z)^2,$$

or
$$6z^2 - z \{(n-4)^2 + \rho^2 (5n-8)\} + (n-2) (n-1) \rho^4 = 0 \dots (xlvi).$$

As illustration if n = 25 and $\rho = \cdot 6$

$$6z^{2} - 483 \cdot 12z + 71 \cdot 5392 = 0,$$

giving $z = \cdot 148,351,$
or, $\rho_{0}^{2} = \check{r}\rho = \cdot 385,164,$
and $\check{r} = \cdot 64194,$

a value* in excellent agreement with the results on p. 337, and needing no further approximation.

Again suppose n = 5, and $\rho = \cdot 6$, we have

$$6z^2 - 7 \cdot 12z + 1 \cdot 5552 = 0.$$

Hence z = .288,6295 and $\rho_0^2 = .537,2425$ leading to $\check{r} = .895,404$ as our approximation. We shall now use this value of ρ_0^2 to determine the true system of E's corresponding to this value.

We have
$$n (1 - \rho_0^4) E_{n+1} = (2n-1) \rho_0^2 + \frac{n-1}{E_n}$$
,

while

$$E_{2} = \rho_{0}^{2} + \frac{1}{\sqrt{1 - \rho_{0}^{4} \cos^{-1} (-\rho_{0}^{2})}} \dots (xlvii)$$

= 1.091.8073.

1

Substituting in

$$n \times \cdot 711,3705E_{n+1} = (2n-1) \times \cdot 537,2425 + \frac{n-1}{E_n}$$

we obtain the series

$$E_2 = 1.091,8073,$$
 $E_3 = 1.776,5988,$
 $E_4 = 1.786,2042,$ $E_5 = 1.911,8858,$ $E_6 = 1.947,6088.$

The values show us that $E_5 = E_4$ was naturally much rougher in this case than that of n = 25. However we find $\epsilon = +.001,1177$, $\rho_0^2 = .538,3602$ and $\breve{r} = .897,267$, as our next approximation, involving no very great change.

* Repeated use of Eqn. (xli) only modified this result to $\tilde{r} = 641,939$.

Biometrika XI

To confirm this value of \check{r} we take as the first approximation to \check{r} the value given in the method of the following section, i.e. $\check{r} = .91344$ giving $\rho_0^2 = .548,064$ and

$$n \times \cdot 699,6259E_{n+1} = (2n-1) \times \cdot 548,0640 + \frac{n-1}{E_n}.$$

Using (xivii) we find
$$E_2 = 1.103,9149$$
 and hence

	$E_3 = 1.822,4446,$	$E_4 = 1.828,4768,$
	$E_{5} = 1.957,1738,$	$E_6 = 1.994,3056,$
leading to	$\epsilon = - \cdot 00$	08,8172,
and	$\rho_0{}^2 = \cdot 539,$	2468,
or	$\breve{r} = \cdot 8987$	75.

It will be seen that our two methods of approaching the true value of \check{r} still differ to some extent, although probably serviceable enough for practical purposes. Accordingly we will now make a further approximation starting from $\check{r} = \cdot 8980$ or $\rho_0^2 = \cdot 5388$, and we have

$E_2 = 1.093,5399,$	$E_3 = 1.783,0638,$	$E_4 = 1.792,1629,$
$E_5 = 1.918,2742,$	$E_6 = 1.954,1949.$	
These give	$\epsilon = - \cdot 000,4924,$	
and consequently	$\rho_0^2 = \cdot 538,3036,$	
with	$\check{r}=\cdot 89717$,	

a value no doubt correct to four figures.

It is clear that the process of finding the mode for n small is much more laborious than for n = 25 or over, because E_n is not nearly E_{n+1} . Actually the value given for E' by the simultaneous equation process from which we started is

$$E' = 1.881,8787,$$

which is only a rough approximation to the value $E_5 = 1.911,8858$. That method must therefore be followed by further approximations when n is much smaller than 25.

(5) Determination of Ordinates and Mode by Expansions.

Approximate Expression for the Ordinates. We may proceed to expand the Eqn. (xxxvii) in powers of 1/n or 1/(n-1). This will involve a knowledge of the expansion of

$$I_n = \int_0^\infty \frac{dz}{(\cosh z - \rho_0^2)^n}, \text{ where } \rho_0^2 = \rho \breve{r},$$

and can be achieved by a process to which Pearson drew attention in 1902*.

Let
$$\frac{1}{\cosh z - \rho_0^2} = \frac{1}{1 - \rho_0^2} e^{-(a_2' z^2 + a_4' z^4 + a_6' z^6 + a_8' z^8 + \dots)} \dots (xlviii).$$

* Biometrika, Vol. 1. p. 393.

Then, if

 $v = \log \left(\cosh z - \rho_0^2 \right) = \log \left(1 - \rho_0^2 \right) + a_2' z^2 + a_4' z^4 + a_6' z^6 + \dots,$

it follows that

$$a_{2}' = \frac{1}{2!} \left(\frac{d^2 v}{dz^2} \right)_0, \qquad a_{4}' = \frac{1}{4!} \left(\frac{d^4 v}{dz^4} \right)_0,$$

and so on.

Now
$$\frac{dv}{dz} = \frac{\sinh z}{\cosh z - {\rho_0}^2}$$
, or $(\cosh z - {\rho_0}^2) \frac{dv}{dz} = \sinh z$.

Apply Leibnitz's Theorem, differentiating (2s - 1) times, and we have

$$\sinh z \frac{dv}{dz} + (2s-1)\cosh z \frac{d^2v}{dz^2} + \frac{(2s-1)(2s-2)}{2!} \sinh z \frac{d^3v}{dz^3} + \dots + (\cosh z - \rho_0^2) \frac{d^{2s}v}{dz^{2s}} = \cosh z.$$

Hence when z = 0

$$(2s-1)\left(\frac{d^2v}{dz^2}\right)_0 + \frac{(2s-1)(2s-2)(2s-3)}{3!}\left(\frac{d^4v}{dz^4}\right)_0 + \dots + (1-\rho_0^2)\left(\frac{d^{2s}v}{dz^{2s}}\right)_0 = 1$$

Now put s in succession 1, 2, 3, etc. and there results

$$\begin{split} (1-\rho_0{}^2) \left(\frac{d^2v}{dz^2}\right)_0 &= 1, \qquad 3 \left(\frac{d^2v}{dz^2}\right)_0 + (1-\rho_0{}^2) \left(\frac{d^4v}{dz^4}\right)_0 = 1, \\ & 5 \left(\frac{d^2v}{dz^2}\right)_0 + 10 \left(\frac{d^4v}{dz^4}\right)_0 + (1-\rho_0{}^2) \left(\frac{d^6v}{dz^6}\right)_0 = 1. \\ & 7 \left(\frac{d^2v}{dz^2}\right)_0 + 35 \left(\frac{d^4v}{dz^4}\right)_0 + 21 \left(\frac{d^6v}{dz^6}\right)_0 + (1-\rho_0{}^2) \left(\frac{d^8v}{dz^8}\right)_0 = 1, \\ & 9 \left(\frac{d^2v}{dz^2}\right)_0 + 84 \left(\frac{d^4v}{dz^4}\right)_0 + 126 \left(\frac{d^8v}{dz^6}\right)_0 + 36 \left(\frac{d^8v}{dz^8}\right)_0 + (1-\rho_0{}^2) \left(\frac{d^{10}v}{dz^{10}}\right)_0 = 1, \\ & \text{etc., etc.} \end{split}$$

These lead to

$$\begin{split} a_{\mathbf{2}'} &= \frac{1}{2} \frac{1}{1 - \rho_0{}^2}, \qquad \qquad a_{\mathbf{4}'} = -\frac{2 + \rho_0{}^2}{24 (1 - \rho_0{}^2)^2}, \\ a_{\mathbf{6}'} &= \frac{16 + 13\rho_0{}^2 + \rho_0{}^4}{720 (1 - \rho_0{}^2)^3}, \qquad \qquad a_{\mathbf{8}'} = -\frac{(272 + 297\rho_0{}^2 + 60\rho_0{}^4 + \rho_0{}^6)}{40320 (1 - \rho_0{}^2)^4}, \\ a_{\mathbf{10}'} &= \frac{7936 + 10841\rho_0{}^2 + 3651\rho_0{}^4 + 251\rho_0{}^6 + \rho_0{}^6}{3,628,800 (1 - \rho_0{}^2)^5}, \quad \text{etc.} \end{split}$$

Accordingly we have, raising (xlviii) to the *n*th power and expanding the exponential after the term in $a_2' z^2$,

$$\frac{1}{(\cosh z - \rho_0^2)^n} = \frac{1}{(1 - \rho_0^2)^n} e^{-na_2'z^2} \{1 - na_4'z^4 - na_6'z^6 - n(a_8' - \frac{1}{2}na_4'^2)z^8 - n(a_{10}' - na_4'a_6')z^{10} - n(a_{12}' - na_4'a_8' - \frac{1}{2}na_6'^2 + \frac{1}{6}n^2a_4'^3)z^{12} + \ldots\}.$$

$$23-2$$

Remembering that

$$\int_{-\infty}^{+\infty} e^{-\frac{\pi z^2}{2(1-\rho_0^2)}} z^{2s} dz = \sqrt{2\pi} \sqrt{\frac{1-\rho_0^2}{n}} (2s-1) (2s-3) \dots 1 \times \frac{(1-\rho_0^2)^s}{n^s},$$

we find

$$\begin{split} I_n &= \int_0^\infty \frac{dz}{(\cosh z - \rho_0^2)^n} = \frac{1}{2} \frac{\sqrt{2\pi}}{(1 - \rho_0^2)^n} \sqrt{\frac{1 - \rho_0^2}{n}} \left(1 + \frac{1}{8} \frac{\rho_0^2 + 2}{n} + \frac{1}{128} \frac{9\rho_0^4 + 12\rho_0^2 + 4}{n^2} + \frac{75\rho_0^6 + 90\rho_0^4 - 20\rho_0^2 - 40}{1024n^3} + \frac{3675\rho_0^8 + 4200\rho_0^6 - 2520\rho_0^4 - 3360\rho_0^2 - 336}{32768n^4} + \text{etc.}\right) \dots (\text{xlix}). \end{split}$$

But $y_n = \frac{(n - 2)\left(1 - \rho^2\right)^{\frac{n - 1}{2}}(1 - r^2)^{\frac{n - 4}{2}}}{\pi} I_{n-1}, \text{ if } \rho_0^2 = \rho r, \end{split}$

and thus we have

$$y_{n} = \frac{1}{\sqrt{2\pi}} \frac{n-2}{\sqrt{n-1}} (1-\rho^{2})^{\frac{3}{2}} \chi_{0}(\rho, r)$$

$$\times \left(1 + \frac{\phi_{1}(\rho r)}{(n-1)} + \frac{\phi_{2}(\rho r)}{(n-1)^{2}} + \frac{\phi_{3}(\rho r)}{(n-1)^{3}} + \frac{\phi_{4}(\rho r)}{(n-1)^{4}} + \dots\right) \dots (l),$$
re
$$\chi_{0}(\rho, r) = \frac{(1-\rho^{2})^{\frac{n-4}{2}}(1-r^{2})^{\frac{n-4}{2}}}{(1-\rho r)^{n-\frac{3}{2}}}$$

where

is symmetrical in ρ and r and

$$\phi_{1}(\rho r) = \frac{r\rho + 2}{8}, \qquad \phi_{2}(\rho r) = \frac{(3r\rho + 2)^{2}}{128},$$

$$\phi_{3}(\rho r) = \frac{5 \{15 (r\rho)^{3} + 18 (r\rho)^{2} - 4 (r\rho) - 8\}}{1024},$$

$$\phi_{4}(\rho r) = \frac{3675 (r\rho)^{4} + 4200 (r\rho)^{3} - 2520 (r\rho)^{2} - 3360 (r\rho) - 336}{32768}$$

thus depend only on the product of ρ and r.

We may write

$$y_{n} = \frac{n-2}{\sqrt{n-1}} (1-\rho^{2})^{\frac{3}{2}} \chi(\rho, r) \left\{ 1 + \frac{\phi_{1}(\rho r)}{(n-1)} + \frac{\phi_{2}(\rho r)}{(n-1)^{2}} + \frac{\phi_{3}(\rho r)}{(n-1)^{3}} + \frac{\phi_{4}(\rho r)}{(n-1)^{4}} + \dots \right\}$$

where

$$\log \chi (\rho, r) = -(n-1) \log \chi_1 - \log \chi_2,$$
$$\chi_1 = \frac{1-\rho r}{\{(1-\rho^2) (1-r^2)\}^{\frac{1}{2}}},$$

and

$$\chi_2 = \frac{\sqrt{2\pi} \left\{ (1-\rho^2)(1-r^2) \right\}^{\frac{3}{2}}}{(1-\rho r)^{\frac{1}{2}}},$$

both being symmetrical in r and ρ

Table C in Appendix gives the values of $\log \frac{n-2}{\sqrt{n-1}}$, $\log (1-\rho^2)^{\frac{3}{2}}$, $\log \chi_1$,

 $\log \chi_2, \phi_1, \phi_2, \phi_3, \phi_4$, and enables the ordinates of the frequency curves to be calculated with considerable rapidity for n = 25 and upwards*

Approximate Expressions for the Mode.

Writing
$$I_n' = \int_0^\infty \frac{dz}{(\cosh z - \rho \check{r})^n}$$

we find

 $I_{n'} = \frac{1}{2} \frac{\sqrt{2\pi}}{(1-\rho\check{r})^{n}} \sqrt{\frac{1-\rho\check{r}}{n}} \left(1 + \frac{\phi_{1'}}{n} + \frac{\phi_{2'}}{n^{2}} + \frac{\phi_{3'}}{n^{3}} + \dots\right),$ where ϕ_s' stands for $\phi_s(\rho \check{r})$. We now use Eqn. (xxxix) and find

$$\frac{\check{r}-\rho\check{r}^2}{\rho-\rho\check{r}^2}=\frac{n-1}{n-4}\sqrt{\frac{n-1}{n}}R,$$

where

$$R = \left(1 + \frac{\phi_1'}{n} + \frac{\phi_2'}{n^2} + \frac{\phi_3'}{n^3} + \dots\right) / \left(1 + \frac{\phi_1'}{(n-1)} + \frac{\phi_2'}{(n-1)^2} + \frac{\phi_3'}{(n-1)^3} + \dots\right)$$
.........(liii)

If we expand this in inverse powers of $\frac{1}{n-1}$, we deduce

$$R = 1 - \frac{\phi_1'}{(n-1)^2} + \frac{\phi_1'^2 - 2\phi_2' + \phi_1'}{(n-1)^3} - \frac{\phi_1'^3 + \phi_1'^2 + \phi_1' - 3\phi_1'\phi_2' - 3\phi_2' + 3\phi_3'}{(n-1)^4} + \dots$$

Again

$$\frac{n-1}{n-4}\sqrt{\frac{n-1}{n}} = 1 + \frac{5}{2(n-1)} + \frac{63}{8(n-1)^2} + \frac{373}{16(n-1)^3} + \frac{8987}{128(n-1)^4} + \dots$$

Thus we have

$$\frac{\breve{r}-\rho\breve{r}^{2}}{\rho-\rho\breve{r}^{2}} = 1 + \frac{5}{2(n-1)} + \frac{63-\phi_{1}'}{8(n-1)^{2}} + \frac{373-24\phi_{1}'+16\phi_{1}'^{2}-32\phi_{2}'}{16(n-1)^{3}} + \frac{8987-816\phi_{1}'+192\phi_{1}'^{2}-128\phi_{1}'^{3}+384\phi_{1}'\phi_{2}'-256\phi_{2}'-384\phi_{3}'}{128(n-1)^{4}} + \dots$$

Bringing the first term on the right to the left we reach after substituting for the ϕ' 's

$$\begin{split} \breve{r} &= \rho \left(1 + \frac{5}{2} \frac{(1 - \breve{r}^2)}{(n-1)} + \frac{(61 - \rho \breve{r})(1 - \breve{r}^2)}{8(n-1)^2} + \frac{(367 - 5\rho \breve{r} - 2\rho^2 \breve{r}^2)(1 - \breve{r}^2)}{16(n-1)^3} \right. \\ &+ \frac{(17606 - 195\rho \breve{r} - 81\rho^2 \breve{r}^2 - 50\rho^3 \breve{r}^3)(1 - \breve{r}^2)}{256(n-1)^4} + \dots \right) \dots \dots (\text{liv}). \end{split}$$

* The ordinates calculated by the rising difference formula were tested in this manner. For n = 25the accordance was excellent, and quite good enough for practical purposes at n = 10. Below this (lii) becomes less reliable and needs more terms.

1

This series has now to be inverted and leads after considerable algebra to

$$\begin{split} \breve{r} &= \rho \left(1 + \frac{5}{2} \frac{(1-\rho^2)}{(n-1)} + \frac{(61-101\rho^2) (1-\rho^2)}{8 (n-1)^2} + \frac{(367-1480\rho^2+1273\rho^4) (1-\rho^2)}{16 (n-1)^3} \right. \\ &+ \frac{(17606-125727\rho^2+246783\rho^4-143782\rho^6) (1-\rho^2)}{256 (n-1)^4} + \ldots \right) \ldots \ldots (lv). \end{split}$$

The above series is of very considerable interest from more than one standpoint*. In the first place it appears that Soper's approximation (*Biometrika*, Vol. IX. p. 108) was not valid. He obtained

$$\breve{r} = \rho \left\{ 1 + \frac{3}{2} \frac{(1-\rho^2)}{(n-1)} + \frac{(41+23\rho^2)(1-\rho^2)}{8(n-1)^2} + \ldots \right\}$$

Thus for n = 25, $\rho = .6$, Soper's formula gives .62811, and (lv) gives .64205, while the exact value is 64194. It is clear that the coefficient $\frac{3}{2}$ in Soper's second term of the series can never approach the $\frac{5}{2}$ of the more exact expression. At first the difference was found very perplexing, especially when the algebra had been verified; but the solution appears to lie in the consideration that the best fitting Pearson curve to the frequency is not one tied down to the range -1 to +1. That curve is fitted by two moments only, but if we fit a curve by the first four moments and use the general expression

$$\check{r} = \bar{r} + \frac{\sigma_r \sqrt{\beta_1} (\beta_2 + 3)}{2 (5\beta_2 - 6\beta_1 - 9)}$$
(lvii),
 $\check{r} = .64192$

we obtain

$$\breve{r}=\cdot 64192,$$

a value close to the true value. In other words the use of the third and fourth moments to find the mode is far more important than fixing down the range to the theoretically possible values; that process determines much more quickly the form of the frequency curve, but it does not give nearly such a good fit as allowing the Pearson curve freedom to adjust itself by means solely of the first four moments[†]. On the other hand a Pearson curve determined by the first four moments does describe fairly accurately the frequency distributions of r for n = 25 and upwards: see p. 337.

(6) Equation for Modes and Antimodes (n = 3).

Still another method of approaching the modal value has been found occasionally of service 1.

* We have used the expansion in terms of 1/(n-1) rather than 1/n as (n-1) appears to arise more simply in all the formulae. The form in 1/n is

$$\check{r} = \left(1 + \frac{5\left(1 - \rho^2\right)}{2n} + \frac{\left(81 - 101\rho^2\right)\left(1 - \rho^2\right)}{8n^2} + \frac{\left(651 - 1884\rho^2 + 1273\rho^4\right)\left(1 - \rho^2\right)}{16n^3} + \ldots\right) \ldots (|vi|).$$

† The Pearson curve determined from the range does not give good values of the frequency for n = 25, even when we use the true values of \bar{r} and σ_r and not Soper's approximations to these constants.

‡ It was used successfully in calculating the antimode in the case of samples of three, when the correlation in the sampled population was low. It gave a fairly good "jumping off point" even for higher values of the correlation.

Starting from the equation (xxxix)

$$(n-4) \check{\rho}^2 I_{n-1} = (\rho^2 - \check{\rho}^4) (n-1) I_n,$$

where $I_n = \int_0^\infty \frac{dz}{(\cosh z - \check{\rho}^2)^{n-1}}$ and $\check{\rho}^2 = \rho\check{r}$, \check{r} being the modal value of r, we may expand I_n and I_{n-1} in terms of powers of $\check{\rho}^2$, the coefficients involving

$$\int_0^\infty \frac{dz}{(\cosh z)^{m-1}} = \int_0^{\frac{\pi}{2}} \sin^{m-1}\theta \, d\theta = q_m.$$

We find at once

$$(n-4) \check{\rho}^{2} \left(q_{n-1} + (n-1) \check{\rho}^{2} q_{n} + \frac{(n-1)n}{1 \cdot 2} \check{\rho}^{4} q_{n+1} \right. \\ \left. + \frac{(n-1)n(n+1)}{1 \cdot 2 \cdot 3} \check{\rho}^{6} q_{n+2} + \dots \right) \\ = (\rho^{2} - \check{\rho}^{4}) (n-1) \left(q_{n} + n\check{\rho}^{2} q_{n+1} + \frac{n(n+1)}{1 \cdot 2} \check{\rho}^{4} q_{n+2} \right. \\ \left. + \frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3} \check{\rho}^{6} q_{n+3} + \dots \right).$$

Rearranging and substituting $\rho \check{r}$ for $\check{\rho}^2$ and noting that

$$q_{m+1}=\frac{m-1}{m}q_{m-1},$$

we have

$$\rho (n-1) q_n = \check{r} q_{n-1} (n-4 - \rho^2 (n-1)^2) + \frac{1}{2} (n-1) \check{r}^2 \rho q_n (2 (n-3) - \rho^2 n^2) + \frac{(n-1) n}{6} \check{r}^3 \rho^2 q_{n+1} (3 (n-2) - \rho^2 (n+1)^2) + \text{etc. } \dots \dots (\text{lviii}),$$

where the form of the successive terms is sufficiently obvious, and the series converges rapidly if ρ be small.

For the particular case in which we have chiefly used this equation to determine \check{r} , namely samples of three, \check{r} corresponds to an antimode and the equation is for n=3:

$$\begin{aligned} 2\rho q_3 &= -\breve{r} q_2 \left(1 + 4\rho^2 \right) - \breve{r}^2 q_3 9\rho^3 + \breve{r}^3 q_4 \rho^2 \left(3 - 16\rho^2 \right) \\ &+ \breve{r}^4 q_5 \rho^3 \left(8 - 25\rho^2 \right) + \breve{r}^5 q_6 \rho^4 \left(15 - 36\rho^2 \right) \\ &+ \breve{r}^6 q_7 \rho^5 \left(24 - 49\rho^2 \right) + \breve{r}^7 q_8 \rho^6 \left(35 - 64\rho^2 \right) \\ &+ \text{etc.} \qquad (\text{lix}). \end{aligned}$$

An equation which led to \check{r} with singular accuracy and comparative ease for small values of ρ by aid of Table X for q_n .

(7) Tables and Models.

Table A (p. 379) gives the values of the mean, of the mode, of the standard deviation, of β_1 and β_2 and thus of the skewness of the frequency distributions of r. It will be seen that long after we have reached the limit of what are usually treated as small samples, the skewness of the distribution of r is very considerable. The

approach to the normal curve is very slow, and the "probable error of the correlation coefficient," i.e. $\cdot 67449 (1 - r^2)/\sqrt{n}$ as usually recorded, has very little worth. Models have been prepared to illustrate these points as follows:

Model A gives for n = 2 to n = 25, the distribution of r for $\rho = .6$. Model B gives for n = 2 to n = 25, the distribution of r for $\rho = .8$. Model C gives for n = 3, the distribution of r for $\rho = 0$ to .9. Model D gives for n = 4, the distribution of r for $\rho = 0$ to .9. Model E gives for n = 25, the distribution of r for $\rho = 0$ to .9. Model E gives for n = 50, the distribution of r for $\rho = 0$ to .9.

(Further models are in process of construction for low values of n.)

Even the photographs of such models form a striking warning of the dangers which arise (i) from small samples, and (ii) from judging results from even repeated small samples; the modal value of the frequency distribution for the correlation of these will be very sensibly higher than the correlation of the sampled population.

(8) On the Determination of the "most likely" Value of the Correlation in the Sampled Population, i.e. $\hat{\rho}$.

We now turn to another point. Suppose we have found the value of the correlation in a small sample to be r, what is the most reasonable value $\hat{\rho}$ to give to the correlation ρ of the sampled population?

Now we know that

$$y_n = (n-2) \frac{(1-\rho^2)^{\frac{n-1}{2}}}{\pi} (1-r^2)^{\frac{n-4}{2}} \int_0^\infty \frac{dz}{(\cosh z - \rho r)^{n-1}} dz$$

and if $\phi(\rho) d\rho$ were the law of distribution of ρ 's, we ought to make

$$\frac{n-2}{\pi} \left(1-\rho^2\right)^{\frac{n-1}{2}} \phi(\rho) \left(1-r^2\right)^{\frac{n-4}{2}} \int_0^\infty \frac{dz}{(\cosh z-\rho r)^{n-1}} d\rho$$

a maximum with ρ , or in other words deduce the value of ρ for a given r from

Fisher puts $\phi(\rho)$ equal to a constant and then differentiating out reaches the equation

$$\int_0^\infty \frac{(r-\rho\cosh z)\,dz}{(\cosh z-\rho r)^n}=0....(lxi),$$

which should provide the value of ρ in terms of r. He solves this only to a first approximation, obtaining,

.

Biometrika, Vol. XI, Part IV

Plate XXV

.

Correlation in Small Samples, $\rho = 0.0$ to $\rho = 0.9$. Frequency curves for samples of size three. Mcdel C in two aspects, illustrating the various U-forms of curves, which occur in this case.

• .

Biometrika, Vol. XI, Part IV

Plate XXVII

Correlation in Small Samples, $\rho = 0.0$ to $\rho = 0.9$ for samples of four. Model D, illustrating forms of frequency passing from the rectangle to marked J-forms of curves, which occur in this case.

.

Biometrika, Vol. XI, Part IV

Plate XXVIII

Correlation in Samples of 25 and 50 for $\rho = 0.0$ to $\rho = 0.9$. Models E and F, illustrating forms still deviating very considerably from normality and increasing in skewness with increase of ρ .

· ·

This is a lower approximation than Soper's second approximation, in similar cases, and we know that even Soper's values are not sufficiently accurate when n is as large as 25. Hence no very great confidence can be put in (lxii).

But there is another point about (lx) which is of great importance. Fisher's equation, our (lxi), is deduced on the assumption that $\phi(\rho)$ is constant. In other words he assumes a horizontal frequency curve for ρ , or holds that à priori all values of ρ are equally likely to occur. This raises a number of philosophical points and difficulties. We ask:

When we are in absolute ignorance as to ρ , is it according to our experience that all values of the correlation are equally likely to occur? We think this question must probably if not certainly be answered in the negative. Very high correlations are relatively rare, and most biometricians would find it difficult to cite straight away a couple of cases of the correlation equal to -.95 although they could cite a score in which the correlation was sensibly zero, or again about $\cdot 5$. Every biometrician is seeking high correlations, for these are for him the all important data, but he knows how difficult and rare they are to find*. The equal distribution of ignorance which applies so well to many statistical ratios, does not seem valid in the case of correlations[†]. We generally know quite approximately

* We have recently had occasion to table (a) nearly 400 correlations between characters of the human femur, and (b) over 300 for characters of the human skull. The distributions were very far indeed from horizontal straight lines, and to suppose à priori such distributions horizontal could only lead to grave errors.

† A similar problem arises in the case of standard deviations. If Σ be the s.p. of the sample and σ of the sampled population, then the frequency curve for s.p.'s is (*Biometrika*, Vol. x. p. 523)

$$y = y_0 \frac{\Sigma^{n-2}}{\sigma^{n-1}} e^{-\frac{1}{2} \frac{n \Sigma^2}{\sigma^2}}.$$

Now, if we make this a maximum for variation of σ , we obtain

$$\sigma = \sqrt{\frac{n}{n-1}} \Sigma....(a)$$

as the "best value" of σ .

This was pointed out to the Editor by "Student," and was a desirable criticism of the statement made (Vol. x. pp. 528-9) that the most reasonable value to give to Σ was the mode of the sampled population, i.e. to take the observed $\Sigma = \check{\Sigma} = \sqrt{\frac{n-2}{n}} \sigma$ or suppose

$$\sigma = \sqrt{\frac{n}{n-2}} \Sigma \dots (\beta).$$

Equations (a) and (β) are not identical. But again (a) is based on the assumption that all values of the s.D. are à priori equally likely to occur. But surely this is not a result in accordance with our experience! Values of σ from 0 to ∞ are not equally within our experience, and there is almost an absurdity in talking about a standard deviation varying from 0 to ∞ ; are we to include all possible scales in this distribution? The s.D. of stature might certainly be anything from practically zero to infinity if we measured it first in "light years" and then in microns. Or, are we to measure our S.D.'s all in the same units, when we suppose the distribution of s.D.'s to be of equal probability from zero to infinity? How is this to be done in the case of an absolute length and an index? Given a definite problem, there is certainly no à priori likelihood that the s.D. will have every value from 0 to ∞ , if we confine ourselves to one scale. It must practically be less than the mean value, and in most actual
the correlation of the characters in the population samples, and desire to ascertain whether a small sample of some population *similar to a known population* confirms our experience.

For example, we may have twenty pairs of brothers recorded for some special character. Our à priori knowledge is certainly not that all correlations between pairs of brothers from -1 to +1 are equally likely to occur! On the contrary we anticipate a value which will not be very far from 0.5. And this à priori conviction is so great, that if the small sample did not give a value which considering the size of the sample was compatible with the correlation in the sampled population being near 0.5, we should suspect errors in the measurement or some form of disturbing selection. In such cases, and something like them appears to us most frequent in biometric practice, it is we think erroneous to apply Bayes' Theorem. All it seems possible to do is to assume that we have drawn a value near the mode of our distribution, for our sampled population is much more likely to have a single value, that of our à priori experience, than every possible value from -1 to +1. If Bayes' Theorem confirms this value—so much the better; if it does not, its fundamental hypothesis is usually so unjustified that it seems most unreasonable to assert that it must give the most likely value of the correlation in the sampled population.

The fuller solution of Eqn. (lxi) thus appears to have academic rather than practical value. Still certain points of theoretical interest arise in the discussion of both (lx) and (lxi). Let us suppose that our \dot{a} priori knowledge consists in the distribution of ρ about a mean $\bar{\rho}$ with a standard deviation κ . It is convenient to take $\kappa^2 = m (1 - \bar{\rho}^2)$, where m is an arbitrary constant. Probably $\kappa = 0$, whenever $\bar{\rho} = 1$, and this suggested this form; but since m is quite arbitrary we lay no stress on this point. The equation to determine the most likely value of ρ now becomes

$$\frac{d}{d\rho} \int_{0}^{\infty} \frac{(1-\rho^2)^{\frac{n-1}{2}} e^{-\frac{(\rho-\bar{\rho})^2}{2m(1-\bar{\rho})^2}}}{(\cosh z - \rho r)^{n-1}} dz = 0,$$

$$\frac{(\rho-\bar{\rho})(1-\rho^2)}{m(n-1)(1-\bar{\rho}^2)} I_{n-1} + \rho I_{n-1} = (1-\rho^2) r I_n \quad \dots \dots \dots (\text{lxiii}).$$

or

Now this equation cannot in general be solved unless we know the order of the product m(n-1). Certain cases, however, can be considered. If m be very large, i.e. if there be very considerable scatter in our past experience of ρ , then

$$\rho I_{n-1} = (1 - \rho^2) r I_n \dots (lxiy),$$

problems is very narrowly limited. For example we measure twenty individuals of a population for stature, and seek the best value of the variability of the sampled population from the result. Would it not be unreasonable to suppose that *à priori* this variability may be equally likely to have any value from 0 to ∞ ? Our *à priori* knowledge is that it is somewhere between 2^{''.5} and 3^{''.0} and very far from equally likely even between these values. To justify the equal distribution of our ignorance, we should have to assume that we neither knew the exact character measured, nor the unit in which it was measured, and such ignorance can only be very exceptional in the present state of our knowledge.

an equation identical with what we obtain by the "equal distribution of our ignorance." The same result is also reached if m be only moderately large and n very big. In other words "the equal distribution of our ignorance," even if we really have some knowledge of the frequency distribution of ρ , will not lead us badly astray in the case of big samples. The matter is quite otherwise, however, in the case of small samples; unless our knowledge is very limited (m very large) we have no right whatever to take (lxiv) as applying to such small samples. Indeed when m is fairly small ρ will not differ substantially from $\bar{\rho}$, and the solution of (lxiii) will differ widely from that of (lxiv). We may consider these cases in succession.

Very slight knowledge of ρ , or on the other hand a large sample. Case (i).

Here we are justified in using (lxiv). We can attempt its solution in two different ways as in the case of the mode.

Let $\hat{\rho}$ be the most likely value of ρ and let us write $\hat{\rho}r = \rho_1^2$, then

$$(r^2 - \rho_1^4) \hat{I}_n = \rho_1^2 \hat{I}_{n-1}.$$

 $(1-\hat{\rho}^2) r\hat{I}_n = \hat{\rho}\hat{I}_{n-1},$

Now let ρ_0^2 be a first approximation to ρ_1^2 and suppose $\rho_1^2 = \rho_0^2 + \epsilon$, where ϵ is small. Then

$$(r^{2} - \rho_{0}^{4} - 2\rho_{0}^{2}\epsilon) (I_{n}' + n\epsilon I'_{n+1}) = (\rho_{0}^{2} + \epsilon) (I'_{n-1} + \overline{n-1} \epsilon I_{n}'),$$
$$I_{n}' = \int_{-\infty}^{\infty} \frac{dz}{dz}$$

where

$$dz_n' = \int_0^\infty \frac{dz}{(\cosh z - {
ho_0}^2)^n}.$$

 $n(1-\rho_0^4)I'_{n+1} = (2n-1)\rho_0^2 I'_n + (n-1)I'_{n-1},$

Hence remembering that

$$\epsilon = \frac{I_{n'}(r^2 - \rho_0^4) - \rho_0^2 I'_{n-1}}{I'_{n-1} + \rho_0^2 (n+1) I_{n'} - n (r^2 - \rho_0^4) I'_{n+1}},$$

$$\epsilon = (1 - \rho_0^4) \frac{(r^2 - \rho_0^4) E_n - \rho_0^2}{(1 - \rho_0^4) - (n - 1)(r^2 - \rho_0^4) + \rho_0^2 \{(n + 1)(1 - \rho_0^4) - (2n - 1)(r^2 - \rho_0^4)\} E_n}$$
.....(lxv),

where

and

$$(1 - \rho_0^4) (n - 1) E_n = (2n - 3) \rho_0^2 + \frac{n - 2}{E_{n-1}} \dots (lxvi),$$

 $E_n = I_n'/I'_{n-1}.$

Now (lxv) and (lxvi) may be treated exactly like the corresponding equations for the determination of the mode. If n be moderately large, we may put

$$E_n = E_{n-1} = E'$$

in (lxv), and if we know ρ_0^2 obtain the value of E', which value substituted for E_n in (lxvi) gives us ϵ and thus a new approximation. If we cannot guess a good value for ρ_0^2 (although $\rho_0^2 = \rho^2$ is in this case usually sufficient) we can treat the

or

numerator of (lxv) equated to zero, and (lxvi) with E' for E_n and E_{n-1} as simultaneous equations to find E' and ρ_0^2 , and so obtain a good approximation straight off, when n is of the order 25, or a fair first approximation when n is smaller.

Applying this we have from (lxv)

$$E_n = E_{n-1} = \rho_0^2 / (r^2 - \rho_0^4).$$

Hence

$$(n-1) (1-\rho_0^4) \rho_0^4 - (2n-3) \rho_0^4 (r^2 - \rho_0^4) - (n-2) (r^2 - \rho_0^4)^2 = 0,$$

or
$$\rho_0^2 = r^2 \sqrt{\frac{n-2}{n-1-r^2}},$$

and therefore
$$\hat{\rho} = r \times \sqrt{\frac{n-2}{n-1-r^2}}......(lx)$$

or

1....s it will be seen that on the hypothesis of the equal distribution of ignorance for n = 100, the ratio of $\hat{\rho}$ to r will differ less than $\cdot 99402$ from unity. On the other hand if n be 5, the ratio of $\hat{\rho}$ to r may differ from unity by as much as $\cdot 8660$ does. For example, if n = 5, then $\hat{\rho} = .26278$ if r = .3. But for a sample of five the standard deviation of a value of ρ between $\cdot 2$ and $\cdot 3$ is of the order $\cdot 18$ to $\cdot 20$, so that there is little to be gained by treating the observed .30 as corresponding to a sampled population of $\cdot 26$.

We shall now proceed to determine an expansion for $\hat{\rho}$. If R be the ratio of Eqn. (liii), we find from (lxiv)

$$\hat{\rho} = r (1 - \hat{\rho}^2) \hat{I}_n / \hat{I}_{n-1},$$

or
$$\hat{\rho} = \frac{r (1 - \hat{\rho}^2)}{1 - \hat{\rho}r} \sqrt{\frac{n-1}{n}} R$$
$$= \frac{r (1 - \hat{\rho}^2)}{1 - \hat{\rho}r} \left(1 + \frac{1}{n-1}\right)^{-\frac{1}{2}} \left(1 - \frac{\phi_1}{(n-1)^2} + \frac{\phi_1^2 - 2\phi_2 + \phi_1}{(n-1)^3} + \dots\right)$$

whence on substituting

$$\hat{\rho} = r \left(1 - \frac{1}{2} \frac{1 - \hat{\rho}^2}{n - 1} + \frac{1}{8} \frac{(1 - r\hat{\rho}) (1 - \hat{\rho}^2)}{(n - 1)^2} + \frac{1}{16} \frac{(1 + r\hat{\rho} - 2r^2\hat{\rho}^2) (1 - \hat{\rho}^2)}{(n - 1)^3} + \dots \right),$$

and after inversion

This result gives us a measure of the correctness of (lxvii), for that equation may be written

$$\hat{\rho} = r \left(\frac{1 - \frac{1}{n-1}}{1 - \frac{r^2}{n-1}} \right)^{\frac{1}{2}}$$

= $r \left\{ 1 - \frac{(1-r^2)}{2(n-1)} - \frac{(1+3r^2)(1-r^2)}{8(n-1)^2} - \frac{(1+2r^2+5r^4)(1-r^2)}{16(n-1)^3} + \ldots \right\} (1 \text{ xi x}).$

Thus the divergence begins as early as the term in $1/(n-1)^2$ and (lxvii) can only be trusted for rough approximations to $\hat{\rho}$.

Illustration. Suppose $r = \cdot 6$, what is the "most likely" value of ρ , on the assumption of equal distribution of ignorance? Let n = 25, then we find from (lxviii)

$$\hat{\rho} = \cdot 59194,$$

while (lxvii) gives .59182, an agreement adequate for most statistical purposes.

If n = 5, and $r = \cdot 6$, we find

 $\hat{\rho} = .55058$ from (lxviii), = .56695 from (lxvii).

There is now considerable divergence in the two methods and another approximation is desirable. Let us take $\rho_0^2 = \hat{\rho}r = \cdot 33035$, then to find E_n we have

$$(n-1) \times \cdot 890,8689E_n = (2n-3) \times \cdot 33035 + \frac{n-2}{E_{n-1}}$$

 E_2 will be given by (xlvii) and equals .885,5939, whence we determine

 $E_3 = 1.189,9819, \quad E_4 = 1.246,8946, \quad E_5 = 1.324,1082,$

and accordingly from (lxv)

$$\epsilon = \cdot 001,3081,$$

$$r\hat{\rho} = \rho_0^2 + \epsilon = \cdot 331,8581,$$

and $\hat{\rho} = .553,097$, a value not far removed from that found by the first approximation. We conclude that even when *n* is small, quite good results will be found from (lxviii) and that it is probably better to use this rather than (lxvii) in such cases as the starting point for a second approximation.

Case (ii). Close à priori Knowledge of ρ .

We will now suppose *m* small, so that the first approximation to ρ may be taken as $\bar{\rho}$. We substitute in (lxiii) $\rho = \bar{\rho} + \psi$ and we find, neglecting squares of ψ .

$$\left(\frac{\psi}{m(n-1)} + \bar{\rho} + \psi\right)(\bar{I}_{n-1} + (n-1)\,r\psi\bar{I}_n) = (1 - \bar{\rho}^2 - 2\bar{\rho}\psi)\,(r\bar{I}_n + nr\psi\bar{I}_{n+1}),$$

where

$$\bar{l}_n = \int_0^\infty \frac{dz}{(\cosh z - \bar{\rho}r)^{n-1}} \, dz$$

This leads us to

$$\psi = \frac{(1-\bar{\rho}^2) \, r\bar{I}_n - \bar{\rho}\bar{I}_{n-1}}{\bar{I}_{n-1} \left(1 + \frac{1}{\bar{m}(n-1)}\right) + \bar{\rho} \, (n+1) \, r\bar{I}_n - (1-\bar{\rho}^2) \, nr^2\bar{I}_{n+1}},$$

whence remembering that

$$n (1 - (r\bar{\rho})^2) \bar{I}_{n+1} = (2n-1) r\bar{\rho}\bar{I}_n + (n-1) \bar{I}_{n-1},$$

and writing $\bar{E}_n = \bar{I}_n / \bar{I}_{n-1}$, we have after some transformations

where

$$(n-1) (1-r^2 \bar{\rho}^2) \vec{E}_n = (rn-3) r\bar{\rho} + \frac{n-2}{\bar{E}_{n-1}} \dots (lxxi).$$

The method is now straightforward, at least for *n* moderately large. We put $\overline{E}_n = \overline{E}_{n-1} = \overline{E}'$ in (lxxi) and substitute the resulting value of \overline{E}' for \overline{E}_n in (lxx), and thus reach the small correction on $\overline{\rho}$.

Illustration. In a sample of 25 pairs only of parent and child the correlation for a certain character was found to be $\cdot 6$. What is the most reasonable value to give to ρ in the sampled population?

If we distributed our ignorance equally the result would be that stated on p. 357, i.e.

$\hat{\rho} = \cdot 59194.$

But, in applying Bayes' Theorem to this case, to what result of experience do we appeal? Clearly the only result of experience by which we could justify this "equal distribution of ignorance" would be the accumulative experience that in past series the correlation of parent and child had taken with equal frequency of occurrence every value from -1 to +1. To appeal to such a result is absurd; Bayes' Theorem ought only to be used where we have in past experience, as for example in the case of probabilities and other statistical ratios, met with every admissible value with roughly equal frequency. There is no such experience in this case. On the contrary the mean value of ρ for very long series of frequencies of 1000 and upwards is known to be $+ \cdot 46$ and the range is hardly more than $\cdot 40$ to 52. We may accordingly take $\bar{\rho} = \cdot 46$ and $m(1-\bar{\rho}^2) = \kappa^2 = about \cdot 0004$, whence

m = .0004/.7884 = .000,507 say.

Thus $\frac{1}{m(n-1)} = 82 \cdot 1828$ and the term containing it is the dominating term in

Equation (lxiii). Thus $\hat{\rho}$ will differ little from $\bar{\rho}$. We find

$$\hat{\rho} = \bar{\rho} + \frac{\cdot 437,006 \bar{E}_n - \cdot 424,959}{70\cdot 034,491 + 2\cdot 790,925 \bar{E}_n}.$$

from (lxx).

We next determine $\vec{E}_n = \vec{E'}$ from (lxxi), i.e.

$$24 \times \cdot 923,824E'^2 - 47 \times \cdot 276\bar{E}' - 23 = 0,$$

which gives us $\overline{E}' = 1.352,2185$, thus $\psi = .00225$ and

$$\hat{\rho} = \cdot 46225,$$

a totally different "most likely value" from that obtained by "equally distributing our ignorance."

Statistical workers cannot be too often reminded that there is no validity in a mathematical theory pure and simple. Bayes' Theorem must be based on experience, the experience that where we are à priori in ignorance all values are equally likely to occur. This is not the case in the present illustration, and we must use our past experience in the same way as we should use our past experience of equal frequency; the appeal to this experience has here absolutely the same validity as in Bayes' case and cannot be for a moment neglected. We see that our new experience scarcely modifies the old and this is what we should naturally conjecture would be the case. If we increase the size of the new sample, then ultimately 1/m (n-1) becomes very small, and we approach nearer the value $\cdot 59194$ given by Bayes' Theorem. But past experience will bias the value obtained from the new material for a long time, and we see that according to the value of the past experience $\hat{\rho}$ may vary from .46225 to .59194. It will thus be evident that in problems like the present the indiscriminate use of Bayes' Theorem is to be deprecated. It has unfortunately been made into a fetish by certain purely mathematical writers on the theory of probability, who have not adequately appreciated the limits of Edgeworth's justification of the theorem by appeal to general experience.

Case (iii). Past Experience a Factor, but not the Dominating Factor of Judgment.

Cases can arise in which $\rho = \bar{\rho}$ is not a very close approximation, i.e. when we have some past experience, but not a very concentrated one of like correlations. In this case we must return to Equation (lxiii), and we shall assume $\hat{\rho}r = \rho_0^2 + \epsilon$, where ρ_0^2 is some fairly close approximation to $\hat{\rho}r$. We shall write $\bar{\rho}r = \bar{\rho}_0^2$. We find

$$\epsilon = \frac{(r^2 - \rho_0^4) I_n - \left\{ \rho_0^2 + \frac{(\rho_0^2 - \bar{\rho}_0^2) (r^2 - \rho_0^4)}{m (n-1) (r^2 - \bar{\rho}_0^4)} \right\} I_{n-1}}{\left\{ 1 + \frac{r^2 + 2\rho_0^2 \bar{\rho}_0^2 - 3\rho_0^4}{m (n-1) (r^2 - \bar{\rho}_0^4)} \right\} I_{n-1} + \left\{ (n+1) \rho_0^2 + \frac{(\rho_0^2 - \bar{\rho}_0^2) (r^2 - \rho_0^4)}{m (r^2 - \bar{\rho}_0^4)} \right\} I_n - n (r^2 - \rho_0^4) I_{n+1}} \dots (lxxii),$$

where $n (1 - \rho_0^4) I_{n+1} = (2n - 1) \rho_0^2 I_n + (n - 1) I_{n-1}$ (lxxiii),

equations which can be readily expressed in terms of E's.

Unfortunately the approximation obtained by equating the numerator of ϵ to zero and using (lxxiii) as simultaneous equations is not very rapidly obtained as the resulting equation is now of the eighth order. It is better from the data themselves to guess a reasonable value for ρ_0^2 and start the approximation from this.

Illustration. The correlation between the maximum length and breadth of crania is not very definitely known. Its mean is about $\cdot 30$, but the values determined for it range from nearly zero to $\cdot 6$. Assuming the standard deviation to be $\cdot 1$, what is the "most likely value" to give to this correlation in the case of a sample of 25 skulls showing a correlation of $\cdot 50$?

Here $\bar{\rho} = \cdot 30$, $m(1 - \bar{\rho}^2) = \cdot 01$, and n = 25. $\bar{\rho}_0^2 = r\bar{\rho} = \cdot 15$. We will assume as a first approximation to $\hat{\rho}$, $\hat{\rho} = \cdot 40$, hence $\rho_0^2 = \cdot 20$. Equation (lxxiii) for n = n - 1 gives

$$(n-1) \times \cdot 96E_n = (2n-3) \times \cdot 20 + (n-2)/E_{n-1}$$

Put n = 25, and $E' = E_n = E_{n-1}$, and we have to find E', $23.04E'^2 - 9.4E' - 23 = 0$.

$$23 \cdot 04E'^2 - 9 \cdot 4E' - 23 = 0,$$

which gives E' = 1.223,7367; from this we deduce $E_{n+1} = 1.225,5025$, and

 $\epsilon = - \cdot 029,9238,$

leading to $r\hat{\rho} = \cdot 170,0762$, or $\hat{\rho} = \cdot 34015$.

Starting again with $\rho_0^2 = \cdot 17008$, we find

$$\begin{array}{ll} 23\cdot 305,7472 E'^2 - 7\cdot 99376 E' - 23 = 0,\\ E' = 1\cdot 179,6109 \quad \text{and} \quad E_{n+1} = 1\cdot 181,3579. \end{array}$$

giving

 $\epsilon = + \cdot 003,999,$ Whence we deduce

and accordingly $r\hat{\rho} = \cdot 174,079$ and $\hat{\rho} = \cdot 34816$, a close enough approximation.

But if we had "equally distributed our ignorance" we should have found*

$$\hat{\rho} = \cdot 49217.$$

These results seem extremely suggestive. If we were to observe the correlation of length and breadth of skull in a new sample of 25 skulls, then an observed value of .50 would give a "most likely value" on the equal distribution of ignorance of •4922.

But no biometrician would admit absolute ignorance in such a case; the correlation has been determined rather vaguely and not very adequately so that results range from something like zero to .6. But this à priori knowledge leads on precisely the same basis as Bayes' Theorem to the value $\hat{\rho} = \cdot 3482$ —a result very much closer to previous experience of the mean value, than to the observed result. And there are relatively few cases in which some such, if only vague, à priori experience does not exist.

In the light of the above illustrations we consider it justifiable to assert that the results deduced from the principle of the "equal distribution of ignorance" have academic rather than practical value, and we hold that to apply it without consideration of its basis to the problem of finding the most likely values of the statistical constants of a sampled population from the values observed in a small sample may lead to results very wide from the truth.

(9) Special Cases of Frequency for n small.

We shall now discuss individually the lowest sample sizes.

(i) Samples of Two, n = 2. Here

$$\bar{r}=\frac{\sin^{-\rho}}{\frac{1}{2}\pi},$$

* Equation (lxvii) would give $\hat{\rho} = .49204$, nearly as good practically as (lxviii)

and the distribution consists of $\frac{\cos^{-1}(-\rho)}{\pi}$ at r = +1 and $\frac{\cos^{-1}\rho}{\pi}$ at $r = -1^*$, or at what is the same thing $\frac{1}{2}(1+\bar{r})$ and $\frac{1}{2}(1-\bar{r})$.

The moments are

 $\mu_1' = \mu_3' = \bar{r}, \qquad \mu_2' = \mu_4' = 1,$

and accordingly

 $\begin{array}{ll} \mu_2 = 1 - \bar{r}^2, & \mu_3 = -\ 2\bar{r}\ (1 - \bar{r}^2), & \mu_4 = (1 - \bar{r}^2)\ (1 + 3\bar{r}^2)\dots(lxxiv).\\ \\ \text{Hence} & \beta_1 = 4\bar{r}^2/(1 - \bar{r}^2), & \beta_2 = (1 + 3\bar{r}^2)/(1 - \bar{r}^2),\\ \\ \text{and accordingly} & \beta_2 - \beta_1 - 1 = 0. \end{array}$

ρ, value of correlation in sampled population	7, mean correlation of samples	στ	β1	β2	Number of positive cor- relations per 1000 samples	Number of negative cor- relations per 1000 samples
0.0	0	1	0	1	500-000	500.000
0.1	063,7686	·997.965	·016.332	1.016,332	531.884	468.116
0.2	$\cdot 128.1884$.991.750	066.827	1.066,827	564·094	435.906
0.3	$\cdot 193.9734$	·981.007	$\cdot 156.387$	1.156,387	596.987	403.013
0.4	$\cdot 261.9798$	·965.007	$\cdot 294.764$	1.294,764	630-990	369-010
0.5	·333,3333	$\cdot 942.809$	·500,000	1.500,000	666-667	333-333
0.6	$\cdot 409.6655$.912.236	·806.686	1.806,686	704.833	295.167
0.7	·493.6334	·869.670	1.288.724	2.288,724	746.817	253.183
0.8	$\cdot 590.3345$	·807.164	2.139.534	3.139,534	795.167	204.833
0.9	$\cdot 712.8674$	$\cdot 701.299$	4.133.056	5.133,056	856.434	143.566
1.0	1.000,0000	.000,000	oc	x	1,000.000	•000,000

TABLE I. Samples of Two.

The distributions are two lumps given by the last two columns, and are accurately given by Pearson's skew frequency distributions for the relation $\beta_2 - \beta_1 - 1 = 0$ (see *Phil. Trans.* Vol. 216 A, p. 433).

(ii) Samples of Three, n = 3.

$$y_3 = N \frac{1-\rho^2}{\pi} \frac{1}{\sqrt{1-r^2}} \frac{dU}{dx}$$
,

where

$$x = r\rho$$
 and $U = \cos^{-1}(-x)/\sqrt{1-x^2}$

as before. Hence

$$\begin{split} \mu_{p}' &= \int_{-1}^{+1} r^{p} y_{3} dr = \frac{1}{\rho^{p+1}} \int_{-\rho}^{+\rho} x^{p} y_{3} dx \\ &= \frac{\rho \left(1 - \rho^{2}\right)}{\pi \rho^{p+1}} \int_{-\rho}^{+\rho} \frac{x^{p}}{\sqrt{\rho^{2} - x^{2}}} \frac{dU}{dx} dx. \end{split}$$

* Since we can determine at sight whether any pair is positively or negatively correlated, this gives a method of determining ρ by simply counting the number of +1 and -1 correlations in the arrays, say m_p and m_n , then $\rho = \cos \pi \left(\frac{m_n}{m_n + m_p}\right)$ and the probable error of the determination is $\frac{\cdot 67449}{\sqrt{N}} \sqrt{1 - \rho^2} \sqrt{\frac{m_n}{N} \left(1 - \frac{m_n}{N}\right)},$

N being the number of pairs used. Cf. "Student," *Biometrika*, Vol. vi. p. 304. Biometrika XI

24

Now let $x = \rho \sin \phi$, then

$$\mu_{p}' = \frac{1-\rho^2}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin^p \phi \, \frac{dU}{dx} \, d\phi.$$
$$\sin \dot{\phi} \, \frac{dU}{dx} = \frac{dU}{d\rho} \,,$$

Now

$$\mu_{p}' = \frac{1 - \rho^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin^{p-1}\phi \, \frac{dU}{d\rho} \, d\phi$$
$$= \frac{1 - \rho^{2}}{\pi} \frac{d}{d\rho} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin^{p-1}\phi \, U \, d\phi.$$
$$U = \int_{-\frac{\pi}{2}}^{\infty} dz$$

 \mathbf{But}

$$U = \int_0^{\pi} \frac{dz}{\cosh z - \rho \sin \phi},$$

 \mathbf{thus}

$$\mu_{p}' = \frac{1-\rho^{2}}{\pi} \frac{d}{d\rho} \int_{0}^{\infty} dz \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\sin^{p-1}\phi}{\cosh z - \rho \sin \phi} d\phi \dots$$

Write

$$\psi = \frac{\pi}{2} + \phi$$
 and $\cosh z = \eta$,

we have

$$\mu_{p}' = \frac{1-\rho^{2}}{\pi} \frac{d}{d\rho} \int_{0}^{\infty} dz \int_{0}^{\pi} \frac{(-1)^{p-1} \cos^{p-1} \psi d\psi}{\eta + \rho \cos \psi} \quad \dots \dots \dots \dots \dots (lxxv).$$

Let p = 1, then we find

$$\mu_{1}' = \frac{2(1-\rho^{2})}{\pi} \frac{d}{d\rho} \int_{0}^{\infty} dz \int_{0}^{\pi} \frac{d(\tan \frac{1}{2}\psi)}{(\eta+\rho) + (\eta-\rho)\tan^{2}\frac{1}{2}\psi}$$

 But

$$\int_{0}^{\pi} \frac{d\left(\tan\frac{1}{2}\psi\right)}{\left(\eta+\rho\right)+\left(\eta-\rho\right)\tan^{2}\frac{1}{2}\psi} = \left[\frac{1}{\sqrt{\eta^{2}-\rho^{2}}}\tan^{-1}\left(\frac{\tan\frac{1}{2}\psi}{\sqrt{\eta+\rho}}\right)\right]_{0}^{\pi} = \frac{\pi}{2}\frac{1}{\sqrt{\eta^{2}-\rho^{2}}}.$$
Thus
$$\mu_{1}' = (1-\rho^{2})\frac{d}{d\rho}\int_{0}^{\infty}\frac{dz}{\sqrt{\eta^{2}-\rho^{2}}}.$$
Now take
$$\eta = \frac{1}{\sin\phi'} = \cosh z,$$
hence
$$-\frac{\cos\phi'}{\sin^{2}\phi'}d\phi' = \sinh zdz,$$

$$= \sqrt{\eta^{2}-1}dz,$$

thus

$$dz = -\csc \phi' d\phi'.$$

It follows that
$$\mu_1' = (1-\rho^2) \frac{d}{d\rho} \int_0^{\frac{\nu}{2}} \frac{d\phi'}{\sqrt{1-\rho^2 \sin^2 \phi'}}.$$

Let as usual

 $F\left(k, \frac{\pi}{2}\right) = \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}},$ $F\left(l, \frac{\pi}{2}\right) = \int_{0}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{1-k^2\sin^2\phi}},$

and

$$E\left(k, \frac{\pi}{2}\right) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2 \phi} \, d\phi.$$
$$\mu_1' = (1 - \rho^2) \frac{dF\left(\rho, \frac{\pi}{2}\right)}{d\rho}.$$

Then we have

But

$$\frac{dF_1}{dk} = \frac{1}{kk'^2} (E_1 - k'^2 F_1),$$

 $k'=\sqrt{1-k^2},$

where

 E_1 and F_1 denoting the complete elliptic integrals*.

Thus finally

$$\bar{r} = \frac{1}{\rho} \{ E_1 - (1 - \rho^2) F_1 \}$$
(lxxvi),

and \bar{r} is known, as soon as ρ is given, from tables of the complete elliptic integrals.

Returning to Equation (xx) and putting n = 3 we have

and further

We now turn to the third moment and may anticipate a recurrence of the elliptic integrals. We shall obtain our result on the whole most briefly by appealing to Equations (xxii) and (xxiii) on pp. 335 and 336. We have

$$\mu_{3}' = \chi_{1} - \chi_{3} = \frac{\rho \left(1 - \rho^{2}\right)}{2} \left\{ I_{3} \cdot F\left(\frac{3}{2}, \frac{3}{2}, 2, \rho^{2}\right) - \frac{1}{3} I_{5} \cdot F\left(\frac{3}{2}, \frac{3}{2}, 3, \rho^{2}\right) \right\},$$

ince $I_{3} = \frac{\pi}{2}, I_{5} = \frac{3}{4} \frac{\pi}{2},$

or since

$$\begin{split} \mu_{\mathbf{3}'} &= \frac{\rho \left(1-\rho^2\right)}{2} \frac{\pi}{2} \left\{ F\left(\frac{3}{2}, \ \frac{3}{2}, \ 2, \ \rho^2\right) - \frac{1}{4} F\left(\frac{3}{2}, \ \frac{3}{2}, \ 3, \ \rho^2\right) \right\} \\ &= \frac{\rho \left(1-\rho^2\right)}{2} \frac{\pi}{2} \left\{ S\left[\frac{\left(3 \cdot 5 \dots 2s+1\right)^2}{2^{2s} \left(s\right)! \left(s+1\right)!} \ \rho^{2s}\right] - \frac{1}{2} S\left[\frac{\left(3 \cdot 5 \dots 2s+1\right)^2}{2^{2s} \left(s\right)! \left(s+2\right)!} \ \rho^{2s}\right] \right\} \\ &= \frac{\rho \left(1-\rho^2\right)}{2} \frac{\pi}{2} \left\{ S\left[\frac{\left(3 \cdot 5 \dots 2s+1\right)^2}{2^{2s} \left(s\right)! \left(s+1\right)!} \left(1-\frac{1}{2s+4}\right) \rho^{2s}\right] \right\} \end{split}$$

* Cayley, Elementary Treatise on Elliptic Functions, p. 48.

24-2

$$\begin{split} &= \frac{\rho \left(1-\rho^2\right) \pi}{2} \frac{\pi}{2} \left\{ S \left[\frac{(3 \cdot 5 \dots 2s + 3)^2}{2 \cdot 2^{2s} (s + 2)! (s + 2)!} \frac{(s + 1) (s + 2)}{2s + 3} \rho^{2s} \right] \right\} \\ &= \frac{(1-\rho^2) \pi}{2\rho^2} \frac{d}{2d\rho} \left\{ S \left[\frac{(3 \cdot 5 \dots 2s + 3)^2}{2^{2s} (s + 2)! (s + 2)! (s + 2)!} \frac{s + 1}{2s + 3} \frac{\rho^{2s + 4}}{2^2} \right] \right\} \\ &= \frac{1-\rho^2}{\rho^2} \frac{d}{d\rho} \left\{ \frac{\pi}{2} S \left[\frac{(3 \cdot 5 \dots 2s + 3)^2}{2^4 \cdot 2^{2s} (s + 2)! (s + 2)!} \left(1 - \frac{1}{2s + 3}\right) \rho^{2s + 4} \right] \right\} \\ &= \frac{1-\rho^2}{\rho^2} \frac{d}{d\rho} \left\{ \frac{\pi}{2} F \left(\frac{1}{2}, \frac{1}{2}, 1, \rho^2\right) + \frac{\pi}{2} F \left(-\frac{1}{2}, \frac{1}{2}, 1, \rho^2\right) \right\} \\ &= \frac{1-\rho^2}{\rho^2} \frac{d}{d\rho} \left\{ F_1(\rho) + E_1(\rho) \right\} \\ &= \frac{1-\rho^2}{\rho^2} \left\{ \frac{E_1 - (1-\rho^2) F_1}{\rho (1-\rho^2)} + \frac{E_1 - F_1}{\rho} \right\}, \end{split}$$
r
µ₃' = $\frac{2-\rho^2}{\rho^3} E_1 - \frac{2(1-\rho^2)}{\rho^3} F_1$

0

where E_1 and F_1 are as before the complete elliptic integrals.

In order to obtain the fourth moment coefficient about zero we will return to formulae (xx) and (xxi) of pp. 334-5 and write

$$\begin{split} \mu_2' &= 1 - \frac{n-2}{n-1} \left(1 - \rho^2\right) f_2 \\ &= 2\mu_2' - 1 + \frac{n \left(n-2\right)}{\left(n+1\right) \left(n-1\right)} \left(1 - \rho^2\right)^2 f_4. \end{split}$$

and

where f_2 and f_4 are the hypergeometrical series.

Now the general term of f_2 is

 μ_4'

$$\frac{(2 \cdot 4 \cdot 6 \cdot 8 \dots 2s + 2)^2 \rho^{2s+2}}{(s+1)! (n+1) (n+3) \dots (n+2s+1) 2^{s+1}},$$

and the general term of f_4 is

$$\frac{(4.6.8...2s+2)^2 \rho^{2s}}{(s)!(n+3)(n+5)...(n+2s+1)2^s}.$$

hat
$$\frac{n+1}{4\rho} \frac{df_2}{d\rho} = f_4,$$

Hence it follows that or we have

$$\mu_{4}' = 1 - \frac{2(n-2)}{n-1} (1-\rho^{2}) f_{2} + \frac{n(n-2)}{4(n-1)} (1-\rho^{2})^{2} \frac{df_{2}}{\rho d\rho} \quad \dots \dots (1 \text{ xxx}).$$

Thus if we are able to sum f_2 algebraically, we can determine μ_4' algebraically*

* The corresponding formula for μ_3' and $\mu_1' = \bar{\tau}$ is

$$\mu_{3}' = \frac{2 - \rho^{2}}{\rho^{3}} E_{\nu} - \frac{2(1 - \rho^{2})}{\rho^{3}} F_{1}$$

confirming the result in Eqn. (lxxix).

Putting
$$n=3$$
 and writing $f_2 = -\frac{1}{\rho^2}\log_e (1-\rho^2)$, we have

$$\mu_4' = 1 + \frac{1-\rho^2}{\rho^2}\log_e (1-\rho^2) - \frac{3}{8}\frac{(1-\rho^2)^2}{\rho}\frac{d}{d\rho}\left\{\frac{\log_e (1-\rho^2)}{\rho^2}\right\}$$

$$= 1 + \frac{1-\rho^2}{4\rho^4}\left\{3\rho^2 + (3+\rho^2)\log_e (1-\rho^2)\right\}\dots(1xxii).$$

This completes the moment coefficients for samples of three.

As ρ may be determined by considering the ratio of negative to positive correlations in samples of two, so it may be determined by considering the ratio of positive to negative correlations in samples of three. Let m_p be the number of positive and m_n the number of negative correlations, then since

$$\begin{split} y_3 &= N \, \frac{1-\rho^2}{\pi} \, \frac{1}{\sqrt{1-r^2}} \frac{1}{r} \frac{dU}{d\rho} \,, \\ m_p &= \frac{1-\rho^2}{\pi} \, \frac{d}{d\rho} \int_0^{+1} \frac{U dr}{r \sqrt{1-r^2}} \\ &= \frac{1-\rho^2}{\pi} \, \frac{d}{d\rho} \int_0^{+1} \frac{\cos^{-1}\left(-\rho r\right) dr}{r \sqrt{\left(1-r^2\right)\left(1-r^2\rho^2\right)}} \\ m_n &= \frac{1-\rho^2}{\pi} \, \frac{d}{d\rho} \int_{-1}^0 \frac{\cos^{-1}\left(-\rho r\right) dr}{r \sqrt{\left(1-r^2\right)\left(1-r^2\rho^2\right)}} \end{split}$$

and

or if $r = \sin \phi$,

Now put in the latter integral r = -r, then

$$m_n = \frac{1-\rho^2}{\pi} \frac{d}{d\rho} \int_0^{+1} \frac{-\cos^{-1}(\rho r) dr}{r \sqrt{(1-r^2)(1-r^2\rho^2)}} \,.$$

But $\cos^{-1}(-\rho r) + \cos^{-1}(\rho r) = \pi$, hence

$$\begin{split} \frac{m_p - m_n}{m_p + m_n} &= (1 - \rho^2) \frac{d}{d\rho} \int_0^{+1} \frac{dr}{r \sqrt{(1 - r^2) (1 - r^2 \rho^2)}} \\ &= (1 - \rho^2) \int_0^1 \frac{r^2 \rho \, dr}{\sqrt{1 - r^2 (1 - r^2 \rho^2)^{\frac{3}{2}}}}, \\ &= (1 - \rho^2) \int_0^{\frac{\pi}{2}} \frac{\rho \sin \phi \, d\phi}{(1 - \rho^2 \sin^2 \phi)^{\frac{3}{2}}} \\ &= - (1 - \rho^2) \int_0^{\frac{\pi}{2}} \frac{d \left(\rho \cos \phi\right)}{(1 - \rho^2 + \rho^2 \cos^2 \phi)^{\frac{3}{2}}} \end{split}$$

Or again if $\rho \cos \phi = \sqrt{1 - \rho^2} \tan \theta$,

$$\frac{m_p - m_n}{m_p + m_n} = + (1 - \rho^2) \int_0^{\sin^{-1}\rho} \frac{\sqrt{1 - \rho^2} \cos^3 \theta}{(1 - \rho^2)^{\frac{3}{2}}} \frac{d\theta}{\cos^2 \theta}$$
$$= \int_0^{\sin^{-1}\rho} \cos \theta d\theta = \rho,$$

or

 $\rho = (m_p - m_n)/(m_p + m_n)$ (lxxxiii),

a very simple formula if m_p or m_n has been found.

$$\rho = (2m_p - N) N,$$

and

$$\delta
ho = 2 \delta m_p / N$$
,

Clearly

$$\sigma_{\rho}^{2} = 4\sigma_{m_{p}}^{2} = 4\frac{m_{p}}{N^{2}}\left(1-\frac{m_{p}}{N}\right)$$

Thus the probable error of ρ found in this manner is

$$\frac{67449}{\sqrt{N}} 2\sqrt{\frac{m_p}{N}\left(1-\frac{m_p}{N}\right)} \dots (lxxxiv),$$

and can easily be evaluated, for it gives :

Probable Error of
$$\rho = \frac{.67449}{\sqrt{N}}\sqrt{1-\rho^2}$$
(lxxxv).

We see it is larger by the factor $\frac{1}{\sqrt{1-\rho^2}}$, which is greater than unity, than the

usual value for the product moment process of the correlation. But a new point arises: N is the number of triplets in the present process, and N the number of individuals in the product moment process. If we take M triplets and N individuals, we have to compare

$$67449 \sqrt{1-\rho^2}/\sqrt{M}$$
 with $\cdot 67449 (1-\rho^2)/\sqrt{N}$,

and these probable errors will be equal if

$$M = N/(1-\rho^2).$$

If the number of triplets be > $N/(1 - \rho^2)$ the triplet process will be more accurate than the product moment method. The number of triplets required for equality of probable errors are for the various values of ρ :

$$\begin{array}{lll} \rho = 0 & M = N, & \rho = \cdot 5 & M = 1 \cdot 333N, \\ \rho = \cdot 1 & M = 1 \cdot 010N, & \rho = \cdot 6 & M = 1 \cdot 563N, \\ \rho = \cdot 2 & M = 1 \cdot 042N, & \rho = \cdot 7 & M = 1 \cdot 923N, \\ \rho = \cdot 3 & M = 1 \cdot 099N, & \rho = \cdot 8 & M = 2 \cdot 778N, \\ \rho = \cdot 4 & M = 1 \cdot 190N, & \rho = \cdot 9 & M = 5 \cdot 263N. \end{array}$$

This series would seem to suggest, since a triplet contains three individuals, that to use the triplet process with equal exactness with the product moment process, in the case, say, of $\rho = .5$, we should need a population of 4N. But this assumes that each triplet is based upon three independent individuals. Actually a population of N provides $\frac{1}{6}N(N-1)(N-2)$ triplets and if these could be considered as an *independent* sample of M triplets, we should have a less value of the probable error of ρ by the triplet process using all possible sets than by the product moment process, provided

$$\rho^2 < 1 - \frac{6}{(N-1)(N-2)}$$

For example if N = 10, for all values of ρ between + .957 and - .957, the 120 triplets will give a better result than the 10 individuals. Even 50 triplets would be better than 10 individuals for all values of ρ between + .894 and - .894. But the question arises whether we can consider the 120 triplets from a sample of 10 individuals as much a random sample as 120 triplets from an indefinitely large population, and this can hardly be the case. It may be, however, that 50 triplets out of the 120 would be sufficiently independent to give a better result than 10 individuals. It is very desirable that a full study should be made of such restricted sampling, for without such study it is not possible to assert how far the probable errors of doublet or triplet procedure are greater than those of the product moment method.

Of course in such a case as that referred to, the labour of the triplet process will be considerably greater, for we have to determine the *sign* of the correlation in 50 or 120 cases, instead of applying the product moment process to 10 individuals, and the labour rapidly increases with increase in the size of the set (doublet, triplet, etc.) and the size of the sample. Still the labour may be worth while in the case of small populations, where the best result is of considerable importance. We have not endeavoured to extend the theory to quadruplets or quintettes, because the labour of determining the sign of the correlation in these cases is very considerable.

In the case of triplets, we require the sign of the product moment

$$\frac{x_1y_1+x_2y_2+x_3y_3}{3}-\frac{(x_1+x_2+x_3)(y_1+y_2+y_3)}{9},$$

or the sign of

 $(x_2 - x_1) (y_2 - \overline{y}) + (x_3 - x_1) (y_3 - \overline{y}).$

Now suppose the triplet arranged according to the character x in ascending order x_1, x_2, x_3 , then $x_2 - x_1$ and $x_3 - x_1$ will always be positive, and accordingly if either both $y_2 - \overline{y}$ and $y_3 - \overline{y}$ are positive, or both negative the sign of the correlation is obvious. On the other hand if $y_2 - \overline{y}$ and $y_3 - \overline{y}$ are of *opposite* sign, the matter has got to be a little more carefully considered. But if \overline{y} has been found and the above differences determined, in most cases it is not needful to actually multiply out, in order to realise the sign. A graphic process depending on the plotting of the triplet triangle seemed on the whole more laborious than the above.

Of course in samples of three the U-shaped distributions give a minimum where dy/dr = 0, and we have therefore an *antimode*, not a mode. The values of this antimode are recorded in Table II, p. 368. It will be seen that all the antimodes are negative for positive correlations in the sampled population. The antimode asymptotes to the value -.613,9616, which it reaches when $\rho = +1$. In this case the value actually fails at $\rho = +1$, for the equation dy/dr = 0 is satisfied

then for all values of r, owing to the presence of the factor $(1-\rho^2)^{-2}$: see Equation (xxxvii). Nevertheless the antimode curve goes right up to the point indicated above and this value must be used for the purpose of interpolation

Fig. 2. Mode (Antimode) and Mean Curves for n=3, and for values of ρ from 0 to +1.

between $\rho = .95$ and $\rho = 1.00$. The curve is shown in Fig. 2, and both antimodal and mean lines on the photograph of the model of the frequency surface.

The distributions are after $\rho = 2$ very skew U-shaped frequency curves, whose β_1 , β_2 lie in the U-area of Pearson's skew curves, which, however, do not reproduce the antimode very closely. The ordinates are given in Table A (p. 379).

ρ, value of correlation in sampled population	<i>r</i> , mean correlation of samples	*, antimode of samples	στ	βι	β2	Number of positive correla- tions per 1000 samples	Number of negative correla- tions per 1000 samples
0.0	.0000.0000	.000.0000	.707.1068	+000.0000	1.500.0000	500	500
0.1	.0786.3836	151.2541	.704.5029	·028.0136	1.532,3082	550	450
0.2	$\cdot 1578,7706$	275,5141	.696.5708	·115.2406	1.632,9424	600	400
0.3	·2383,6407	367,9037	·682,9273	$\cdot 272,2374$	1.814,1763	650	350
0.4	·3208,5431	435,4082	·662,8536	·520,5707	2.101.1480	700	300
0.2	·4062,9889	485,5321	.635,1363	.901,7817	2:542,3242	750	250
0.6	4960,0160	523,8811	.597,7313	1.500,1840	3.236,2938	800	200
0.7	·5919,3885	553,8751	.546,9866	2:510,5375	4.411,4204	850	150
0.8	·6975,5118	577,9216	·475,4818	4.503,0667	6.738,8238	900	100
0.9	·8204,3635	597,5916	·363,4654	10.222,6204	13.467,2160	950	50
0.95	8742,5455	- 606,1358	·268,4676	21.078,0376	26.340,9890	975	25
1.00	1.0000,0000	- •613,9616	•000,0000	œ	œ	1,000	0

TABLE II. Samples of Three.

(iii) Samples of Four, n = 4.

Here, if $x = r\rho$,

$$y_4 = \frac{N \left(1 - \rho^2\right)^{\frac{3}{2}}}{\pi} \frac{d^2}{dx^2} \left(\frac{\cos^{-1}\left(-x\right)}{\sqrt{1 - x^2}}\right) ;$$

 $U = \cos^{-1}{(-x)}/{\sqrt{1-x^2}},$

and if

then
$$\mu_{q}' = \frac{(1-\rho^2)^{\frac{3}{2}}}{\pi\rho^{q+1}} \left\{ \left[x^q \frac{dU}{dx} - qx^{q-1}U \right]_{-\rho}^{+\rho} + q (q-1) \int_{-\rho}^{+\rho} x^{q-2}U dx \right\}.$$

To find the first four moments about r = 0, we have to determine

$$\int_{-\rho}^{+\rho} x^2 U dx, \qquad \int_{-\rho}^{+\rho} x U dx, \qquad \int_{-\rho}^{+\rho} U dx,$$
$$x^4 \frac{dU}{dx} - 4x^3 U, \qquad x^3 \frac{dU}{dx} - 3x^2 U, \qquad x^2 \frac{dU}{dx} - 2x U \quad \text{and} \quad x \frac{dU}{dx} - U.$$

The results are most briefly expressed by using Fisher's notation $\rho = \sin \alpha$ and remembering that

$$\cos^{-1}(-\rho) + \cos^{-1}(\rho) = \pi$$
, and $a = \cos^{-1}(-\rho) - \frac{\pi}{2}$.

For the purposes of integration we put $x = -\cos \theta$ and integrate in terms of θ . We find

$$\int_{-\rho}^{+\rho} x^2 U dx = \frac{1}{2}\pi \{a - \cos a \sin a\},\$$

$$\int_{-\rho}^{+\rho} x U dx = 2 \{\sin a - a \cos a\},\$$

$$\int_{-\rho}^{+\rho} U dx = \pi a,\$$

$$x^4 \frac{dU}{dx} - 4x^3 U = \pi \left\{\frac{\sin^5 a}{\cos^3 a} - 4 \frac{\sin^3 a}{\cos a}\right\},\$$

$$x^3 \frac{dU}{dx} - 3x^2 U = 2 \left\{\frac{\sin^3 a}{\cos^2 a} + a \frac{\sin^4 a}{\cos^3 a} - 3a \frac{\sin^2 a}{\cos a}\right\},\$$

$$x^2 \frac{dU}{dx} - 2x U = \pi \left\{\frac{\sin^3 a}{\cos^3 a} - 2 \frac{\sin a}{\cos a}\right\},\$$

$$x \frac{dU}{dx} - U = 2 \left\{\frac{\sin a}{\cos^2 a} + a \frac{\sin^2 a}{\cos^3 a} - a \frac{1}{\cos a}\right\}.$$

Hence substituting in the several values of μ_q' , we obtain*

$$\bar{r} = \mu_1' = \frac{2}{\pi} \{\cot a + a (1 - \cot^2 a)\}....(lxxxvi),$$

* Tested by formulae (lxxx) and (lxxxi), p. 364, which can be put in the forms

$$\mu_{\mathbf{3}'} = \mu_{\mathbf{1}'} \{ (n-2)/\rho^2 - (n-3) \} - \frac{(n-2)(1-\rho^2)}{\rho} \frac{d\mu_{\mathbf{1}'}}{d\rho} \dots (\mathbf{xc}),$$

$$\mu_{\mathbf{4}'} = \frac{1}{2} (n-2) - \frac{1}{2} (n-4) \mu_{\mathbf{2}'} - \frac{1}{4} n \frac{1-\rho^2}{\rho} \frac{d\mu_{\mathbf{2}'}}{d\rho} \dots (\mathbf{xci}).$$

and

$$\begin{split} \sigma_r^2 + \bar{r}^2 &= \mu_2' = 1 - 2 \cot^2 a + 2a \cot^3 a \qquad \dots \dots \dots (lxxxvii), \\ \mu_3' &= \frac{2}{\pi} \left\{ \cot a + 6 \cot^3 a + a \left(1 - 3 \cot^2 a - 6 \cot^4 a\right) \right\} \\ &\qquad \dots \dots \dots (lxxxviii), \\ \mu_4' &= 1 - 4 \cot^2 a - 6 \cot^4 a + a \left(6 \cot^3 a + 6 \cot^5 a\right)^* \end{split}$$

......(lxxxix).

From these formulae were calculated the values given in the following table.

ρ, value of correlation of sampled population	$\vec{\tau}$, mean value of correlation in samples	μ_3 , 3rd moment coefficient	σ _r	Usual value assumed for σ_r , i.e. $\frac{1-\rho^2}{\sqrt{n-1}}$	β1	β2	β ₂ /β ₁
0.0	0	0	·577,3503	·577,3503	0	1.800.000	x0
0.1	·084,9678	033,6268	$\cdot 574,5653$	·571,5768	·031,429	1.839,929	58.5418
0.2	$\cdot 170,4532$	065,2863	·566,0965	·554,2563	·129,510	1.964,665	15.1700
0.3	·257,0089	092,9620	·551,5835	·525,3887	·306,862	2.190,708	7.1391
0.4	$\cdot 345,2652$	- • 114,5383	·530,3576	$\cdot 484,9742$	·589,510	2.552,205	4.3294
0.5	·435,9911	127,7520	$\cdot 501,3081$	·433,0127	1.028,270	3.116,256	3.0306
0.6	·530,1976	130,1567	·462,6087	$\cdot 369,5042$	1.728,423	4.022,982	2.3275
0.7	·629,3378	119,1407	·411,1087	$\cdot 294,4486$	2.940,226	5.609,288	1.9078
0.8	·735,7362	092,1708	·340,7311	·207,8461	5.428,946	8.922,221	1.6435
0.9	·853,9806	048,1281	$\cdot 236,6586$	·109,6966	13.184,043	19.571,006	1.4844
0.95	·920,8889	021,4678	$\cdot 157,7942$	056,2917	29.8558	43.4082	1.4539
0.98	·965,7599	006,4363	·088,2666	·022,8631	87.5994	130-1935	1.4862
0.99	·982,1321	002,4358	·055,4859	·011,4893	203-3250	311.7316	1.5332
1.00	1	0	0	0	80	x	1.8305†

TABLE III. Samples of Four.

* These expressions cannot be applied to the case of $\rho = 0$. We must return to Equation (ix) and put $\rho = 0$, finding $y_4 = \frac{1}{2}N$ or a horizontal line.

† The ratio β_2/β_1 equals in the limit $(27\pi^2 - 256)(3\pi^2 - 16)/(9\pi^2 - 80)^2 = 1.8305$. This may be shown by putting $\alpha = \frac{1}{2}\pi - \epsilon$, or $\rho = 1 - \frac{1}{2}\epsilon^2$, or $\epsilon = \sqrt{1 - \rho^2}$, where ϵ is small. We then find for values of ρ near unity

$$\begin{split} \bar{\tau} &= \rho^2 - \frac{8}{3\pi} \left(1 - \rho^2\right)^{\frac{3}{2}}, \qquad \mu_2 &= \left(\pi - \frac{16}{3\pi}\right) \left(1 - \rho^2\right)^{\frac{3}{2}}, \\ \mu_3 &= -\left(3\pi - \frac{80}{3\pi}\right) \left(1 - \rho^2\right)^{\frac{3}{2}}, \quad \mu_4 &= \left(9\pi - \frac{256}{3\pi}\right) \left(1 - \rho^2\right)^{\frac{3}{2}}. \end{split}$$

These lead to

$$\beta_{1} = \frac{\left(3\pi - \frac{80}{3\pi}\right)^{2}}{\left(\pi - \frac{16}{3\pi}\right)^{3}\left(1 - \rho^{2}\right)^{\frac{3}{2}}}, \qquad \beta_{2} = \frac{\left(9\pi - \frac{256}{3\pi}\right)}{\left(\pi - \frac{16}{3\pi}\right)^{2}\left(1 - \rho^{2}\right)^{\frac{3}{2}}},$$

and give the above result.

(iv) General Case of small Samples, n > 4.

Equations (xxviii), (xxxi), (xxxii), and (xxxiv) enable us to express the momentcoefficients of a sample of n + 2 in terms of those of a sample of n. But we have found algebraic expressions for the moment-coefficients for n = 3 and n = 4 in terms of (a) the complete elliptic integrals and logarithmic functions, (b) trigonometrical functions of a and $\cot a$. Hence all even samples can have their momentcoefficients expressed in terms of a and $\cot a$, and all odd samples can have their odd moment-coefficients expressed in terms of the complete elliptic integrals and their even moments in terms of logarithmic functions. The former result has been already noticed by Fisher*. The arithmetical calculation of the successive momentcoefficients after n = 4 by the difference formulae is, however, shorter than obtaining the algebraical expressions and then substituting arithmetical values, and has been followed in our calculations.

(10) Approach of the Distribution as n increases to a Normal Character.

It is well known that for the "probable error" to have meaning the distribution must approach the Gaussian for which $\beta_1 = 0$, $\beta_2 = 3$. It is clear that these conditions are by no means fulfilled for samples of 25 or 50, whatever be the value of ρ . There is nearer approach in the *low* values of ρ in samples of 100, but there is considerable deviation for $\rho = 5$ and upwards.

ρ	r mean	Actual ř† mode	ř from Pearson's formula‡	Actual σ	$\frac{1-\rho^2}{\sqrt{n-1}}$	$oldsymbol{eta}_1$	$oldsymbol{eta}_2$
0.0	0	0	0	·2041.241	·2041.241	0	2.769 2305
0.1	0.0979,577	.11173	·11127	$\cdot 2022.954$	$\cdot 2020.829$	012.3106	2.791,6002
0.2	·1960,288	$\cdot 22258$	$\cdot 22177$	$\cdot 1967.883$	$\cdot 1959.592$	049.8655	2.860.0511
0.3	$\cdot 2943,287$	$\cdot 33172$	·33090	$\cdot 1875.386$	$\cdot 1857.530$	$\cdot 114.6242$	2.978.8302
0.4	·3929,765	·43840	$\cdot 43758$	$\cdot 1744.356$	$\cdot 1714.643$	$\cdot 210.1771$	3.155.8537
0.5	$\cdot 4920,974$	·54197	·54149	$\cdot 1573.152$	$\cdot 1530.931$	$\cdot 342.3386$	3.404.2283
0.6	·5918,251	·64194	·64190	.1359,499	$\cdot 1306.395$	$\cdot 520.2635$	3.745.3432
0.7	·6923,054	•73792	·73826	$\cdot 1100,322$	$\cdot 1041,033$	$\cdot 758,5549$	4.214.8982
0.8	·7937,001	·82966	·83025	·0791,481	0734,847	1.081,1286	4.869,2635
0.9	·8961,933	·91703	·91736	$\cdot 0427,345$	0387,836	1.533,4124	5.858,3872
1.0	1	1	1	0	0	80	80

TABLE IV. Values of the Frequency Constants for the Correlation in Samples of 25.

It will be realised that while the ordinary value for the standard deviation of r and the distribution of r by a normal curve is fairly close for samples of 400, there is still a quite sensible deviation from normality in the case of $\rho = \cdot 8$ or over. In fact it may be said that for the size of ordinary samples, there is always a sensible

- * Fisher, Biometrika, Vol. x. p. 516.
- † See Sections (4) and (5) above.

 $\ddagger \tilde{r} = \bar{r} + \mu_3 \left(\beta_2 + 3\right) / \left\{ \mu_2 \left(10\beta_2 - 12\beta_1 - 18 \right) \right\}.$

ρ	$ar{r}$ mean	Actual r mode	ř from Pearson's formula*	Actual σ	$\frac{1-\rho^2}{\sqrt{n-1}}$	$oldsymbol{eta_1}$	β_2
0.0	0	0	0	·142.857	·142.857	0	2.88236
0.1	.098.995	·1054	·1053	$\cdot 141.505$	$\cdot 141.429$	-00666	2.89184
0.2	$\cdot 198.047$	·2104	·2102	$\cdot 137.439$	$\cdot 137.143$	·02683	2.93350
0.3	$\cdot 297.218$	·3147	·3144	$\cdot 130.634$	·130.000	·06107	2.99909
0.4	·396,565	·4180	·4177	.121,049	120,000	·11041	3.09417
0.5	496,150	·5198	·5196	108,620	$\cdot 107,143$	·17635	$3 \cdot 22240$
0.6	·596,038	·6201	·6199	093,260	0.091,429	·26110	3.38912
0.7	·696,295	·7184	·7183	074,878	·072,857	·36774	3.60222
0.8	·796,989	·8146	·8146	·053,324	.051,429	·50037	3.87312
0.9	·898,198	·9085	·9085	0.028,434	0.027,143	·66608	$4 \cdot 22186$
1.0	1	1	1	Ó	Ó	œ	œ

TABLE V. Values of the Frequency Constants for the Correlation in Samples of 50.

TABLE VI. Values of the Frequency Constants for the Correlation in Samples of 100.

ρ	₹ mean	Actual ř mode	ř from Pearson's formula*	Actual o	$\frac{1-\mu^2}{\sqrt{n-1}}$	β1	β2
0.0	0	0	0	.100.5038	·100.5038	0	2.94060
0.1	0.099.5016	·10258	·10255	$\cdot 099.5260$.099.4987	·00346	2.94736
0.2	$\cdot 199.0319$	·20499	·20494	096.5887	$\cdot 096.4836$	·01390	2.96774
0.3	$\cdot 298,6219$	·30708	·30701	·091.6832	0.091,4584	·03147	3.00213
0.4	·398,3013	·40868	·40860	084,7934	0.084,4232	·05644	3.05118
0.5	$\cdot 498,1002$	·50964	·50957	075,8968	075,3778	·08919	3.11583
0.6	$\cdot 598,0498$	$\cdot 60982$	·60976	064,9640	064,3224	·13025	3.19739
0.7	$\cdot 698, 1815$	·70907	·70903	051,9577	051,2569	·18031	3.29767
0.8	·798,5279	·80726	·80724	036,8329	036,1814	$\cdot 24027$	3.41896
0.9	$\cdot 899,1225$	$\cdot 90427$	·90423	$\cdot 019,5352$	·019,0957	·31148	3.57898
1.0	1	1	1	0	0	x 0	%

TABLE VII. Values of the Frequency Constants for the Correlation in Samples of 400.

ρ.	\overline{r} mean	Actual ř mode	ř from Pearson's formula*	Actual o	$\frac{1-\rho^2}{\sqrt{n-1}}$	eta_1	β2_
0.0	0	0	0	·0500.626	·0500.626	0	2.9850
0.1	·0998.760	$\cdot 1006.250$	$\cdot 1006.232$	·0495.654	.0495.620	·00089	2.9868
0.2	$\cdot 1997.595$	$\cdot 2012.116$	$\cdot 2012.082$	$\cdot 0480.733$.0480.601	.00357	2.9921
0.3	·2996,579	$\cdot 3017,217$	$\cdot 3017,171$	0455,851	0.0455,570	·00804	3.0010
0.4	·3995,788	•4021,171	$\cdot 4021,115$	0.0420,988	0420,526	·01433	3.0138
0.5	·4995,297	.5023,602	$\cdot 5023,584$	0.0376,115	.0375,470	$\cdot 02250$	3.0297
0.6	·5995,181	$\cdot 6024, 134$	·6024,089	·0321,195	.0320,401	$\cdot 03245$	3.0498
0.7	$\cdot 6995,517$.7022,401	$\cdot 7022,386$	0256,183	.0255,319	·04435	3.0725
0.8	·7996,380	·8018,037	·8018,013	.0181,023	$\cdot 0180,255$	·05820	3.1017
0.9	$\cdot 8997,849$	·9010,725	·9010,668	·0095,653	0095,119	$\cdot 07402$	3.1342
1.0	1	1	ĺ	0	0	80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* $\ddot{r} = \bar{r} + \mu_3 (\beta_2 + 3) / \{ \mu_2 (10\beta_2 - 12\beta_1 - 18) \}.$

.

deviation from normality for high values of ρ in the sampled population, and the usual "probable error of r" must be treated with caution in these cases. Pearson's curves would give better results, as is indicated by the agreement of \check{r} to five figures.

(11) Table for determining the Mode \check{r} of the Frequency Distribution of considerable Size n when the Correlation in the sampled Population is known to be ρ .

The required value of the mode is

$$\check{r} = \rho + \frac{\nu_1(\rho)}{n-1} + \frac{\nu_2(\rho)}{(n-1)^2} + \frac{\nu_3(\rho)}{(n-1)^3} + \frac{\nu_4(\rho)}{(n-1)^4},$$

when ρ is positive; if ρ be negative \check{r} has the same value as for ρ positive, but with opposite sign.

ρ	ν1 (ρ)	$\nu_2(ho)$	ν ₃ (ρ)	ν4 (ρ)
·00	0	0	0	0
·05	·12468,75000	$+ \cdot 37872,26953$	+1.13249,90199	+3.36913,85919
·10	·24750,00000	$+ \cdot 74237,62500$	+2.18002,51688	+ 6.33154,83878
·15	·36656,25000	+1.07636,49609	+3.06395,34936	+8.53428,44284
·20	·48000,00000	+1.36704,00000	+3.71804,16000	+9.72192,80640
·25	·58593,75000	+1.60217,28516	+4.09383,77380	+9.77504,47690
·30	·68250,00000	+1.77142,87500	+4.16514,90563	+8.72821,01391
·35	·76781,25000	+1.86684,01172	+3.93125,67461	+6.77045,11170
•40	·84000,00000	+1.88328,00000	+3.41856,48000	+4.22414,17680
·45	·89718,75000	+1.81893,55078	+2.68036,91046	+1.50278,32653
·50	·93750,00000	+1.67578,12500	+1.79443,35938	-··94981,38428
·55	·95906,25000	+1.46005,27734	+ .85806,01815	-2.73364,05345
·60	·96000.00000	+1.18272,00000	- 01966,08000	-3.57140,42880
·65	·93843,75000	+ .85996,06641	72873,29366	- 3.38017,64160
•70	·89250.00000	+ .51363,37500	-1.17258,21188	-2.31971,93665
.75	·82031,25000	+ .17175,29297	-1.28614,42566	79706,28440
·80	·72000.00000	13104,00000	-1.05802,56000	$+ \cdot 59787,92160$
·85	·58968,75000	35300,16797	55704,89418	+1.25603,36730
•90	$\cdot 42750.00000$	44481,37500	+ .03650,10188	+ .84819,10191
.95	$\cdot 23156, 25000$	34910,94141	$+ \cdot 39461, 98756$	- ·19874,71356
1.00	Ó	0	0	0

TABLE VIII. Functions required in determining the Mode of a large or fairly large Sample.

The above Table will give the value of \check{r} correctly to about the sixth figure if n = 100 or more, to about the fourth figure if n = 25 or more. Below 25 it can only serve as a "taking off point" for more accurate approximations, and these are fairly troublesome if n be very low. It will be found best to interpolate for the expression to be added to ρ .

Illustration. To find the modal \breve{r} for samples of 9 when $\rho = \cdot 2852$.

 $\breve{r} = \rho + \cdot 106,272$, for $\rho = \cdot 25$, $\breve{r} = \rho + \cdot 121,126$, for $\rho = \cdot 30$.

Hence

$$\check{r} = \rho + \cdot 116,729$$
, for $\rho = \cdot 2852$
= $\cdot 4019$. sav.

We cannot, however, be certain that this is correct to more than two figures.

Equation (xlvi) gives us $\breve{r} = \cdot 4038$.

We will therefore start with $\check{r} = \cdot 4030$, say, as the basis of a more elaborate approximation, or $\rho_0^2 = \cdot 1149372$ say.

Hence calculating I_1 and I_2 and using the difference formula we find

$I_1 = 1.6972,3599,$	$I_6 = 1.0465,6745,$
$I_2 = 1.2110,7453,$	$I_7 = 1.0879,1327,$
$I_3 = 1.0715,7031,$	$I_8 = 1.1443,9624,$
$I_4 = 1.0262,1201,$	$I_9 = 1.2145,9528,$
$I_5 = 1.0236, 1262,$	$I_{10} = 1.2980.8251.$

Thus the equality of I_9 and I_{10} has not been reached, so that we could hardly anticipate (xlvi) giving a very good result. Using (xli) we find

$$\epsilon = + .0006,0228,$$

a sufficiently small correction, leading to $\rho_0^2 = \cdot 1155,3948$, and $\breve{r} = \cdot 40512$, correct to the fourth figure. Table VIII for n = 9 gives \breve{r} in error by about 0.8 %.

(12) Table for determining the "most probable" value $\hat{\rho}$ of the correlation in a sampled population from the knowledge of the correlation r in a sample of size n, when n is considerable and it is legitimate to distribute ignorance equally.

The required value is

$$\hat{\rho} = r - \frac{\lambda_1(r)}{n-1} - \frac{\lambda_2(r)}{(n-1)^2} - \frac{\lambda_3(r)}{(n-1)^3},$$

when r is positive; if r be negative, $\hat{\rho}$ has the same value as for r positive, but with opposite sign.

The above formula using Table IX will give $\hat{\rho}$ correct to five figures if n = 25 or over, and correct to four figures if n = 10 or over.

It appears best to interpolate not for the separate λ -functions, but for the total value to be subtracted from r to find $\hat{\rho}$. Thus, suppose we require to find $\hat{\rho}$ for r = .6781 and for n = 16. We have for r = .65

· · ·	$\hat{ ho} = \cdot 65 - \cdot 0127,3515,$
and for $r = \cdot 70$	$\hat{\rho} = \cdot 70 - \cdot 0121,8204.$

Therefore a difference of -.0005,5311 corresponds to a rise of .05 and accordingly one of -.0003,1085 to a rise of .0281. Thus

$$\hat{\rho} = \cdot 6781 - \cdot 0124,2430$$

= \cdot 6657, accurately.

<i>т</i>	$\lambda_1(r)$	$\lambda_{2}\left(r ight)$	$\lambda_3(r)$
•00	0	0	0
·05	02493,75000	- •00615,64453	- •00317,92000
·10	·04950,00000	01175,62500	00667,19813
·15	07331,25000	-·01626,62109	- ·01073,47255
•20	-09600,00000	01920,00000	- ·01551,36000
·25	·11718,75000	02014,16016	02099,99084
•30	·13650,00000	01876,87500	02699,79938
•35	$\cdot 15356, 25000$	01487,63672	03310,98746
•40	·16800,00000	- 00840,00000	03874,08000
·45	$\cdot 17943,75000$	+.00056,07422	04312,99059
·50	18750,00000	+.01171,87500	- 04541,01563
·55	$\cdot 19181,25000$	+.02457,59766	04470,17533
·60	$\cdot 19200,00000$	+.03840,00000	04024,32000
·65	$\cdot 18768,75000$	+.05220,05859	- 03156,41987
.70	$\cdot 17850,00000$	+.06470,62500	01870,45688
.75	$\cdot 16406, 25000$	+.07434,08203	00248,33679
·80	14400,00000	+.07920,00000	+01517,76000
·85	$\cdot 11793,75000$	+ 07702,79297	+.03087,17070
•90	08550,00000	+.06519,37500	+.03926,26688
.95	04631,25000	+.04066,81641	+.03257,27752
1.00	Ó	0	0

TABLE IX. Functions required in determining the "most probable" value $\hat{\rho}$ of the Correlation.

(13) On the Table for
$$q_n = \int_0^{\frac{n}{2}} \sin^{n-1} \phi d\phi$$
.

While Table X, p. 377, gives the value of $q_n = \int_0^{\frac{\pi}{2}} \sin^{n-1}\phi d\phi$ to ten figures, and therefore will be of use in calculating the values of the moments, the reader may be compelled to deal with values of n greater than those tabled, or even may need more than ten significant figures. The present values were calculated to twelve figures, by means of the simple relations

$$q_{2p+2} = q_{2p} - \frac{1}{2p+1} q_{2p+1}$$
$$q_{2p+1} = q_{2p-1} - \frac{1}{2p} q_{2p-1},$$

with the control relation $q_{2p} \times q_{2p-1} = \frac{\pi}{2} \frac{1}{2p-1}$, and the occasional direct calculation of individual q_n 's to control the accuracy by use of Degen's Tables* and Briggs's Arithmetica Logarithmica[†].

Since	$q_{2p+1} = \frac{(2p)!}{2^{2p} \{(p)!\}^2} \frac{\pi}{2}$	(xcii),
ıd	$q_{2p} = \frac{2^{2p} \{(p) !\}^2}{2p (2p) !} \dots$	(xciii),

and

* Tabularum ad faciliorem et breviorem probabilitatis computationem utilium Enneas. C. F. Degen, Havniae, 1824.

† Londini, W. Jones, 1624.

and Degen gives the logarithms of the factorials up to 1200! to eighteen mantissa figures, there is no difficulty in getting the logarithms of the q_n 's to 18 figures. All we need is the value of either $\log \frac{\pi}{2}$ or $\frac{\pi}{2}$ to an adequate number of places* But for modern methods of machine calculation the logarithm is of small service and we need in this case to find also the antilogarithm. Let us illustrate the process in the determination of q_{104} :

$\log q_{104} = 104 \log 2$	= 31·307119,549054,044280
$+ 2 \log (52!)$	$+ 135 \cdot 813296,784409,541764$
$-\log 104$	-2.017033,339298,780355
$-\log(104!)$	- 166.012795,764264,301069
$=\overline{1}.090587,229,5$	900,504,620.

Thus far the work is very straightforward. But to obtain the antilogarithm to twelve figures is another matter. Tables like the original Vega (to 10 figures) or Mendizabel (to 8 figures) are not of service. We are thus compelled to use Briggs's 14 figure Table of Logarithms, but the fundamental defect of that magnificent piece of work is the largeness of the differences. The nearest logarithm to the above is $\log(.12319) = 1.090575,455222,21$ with the remainder

r = .000011,774678,29,

and the difference .000035,252606,20. Mere linear interpolation gives

·1231,9334,0087,32,

which is wrong in the tenth figure.

We have therefore used the method of inverse interpolation given in the *Tables for Statisticians*[†] as (vii)^{bis} on p. xiv. Unfortunately there are two misprints in the value given there (corrected in the *Errata*); it should run

$$\theta^{2} \frac{1}{4} \left(-u_{0} - u_{1} + u_{-1} + u_{2} \right) + \theta \frac{1}{4} \left(5u_{1} - 3u_{0} - u_{-1} - u_{2} \right) + u_{0} - u_{0} \left(\theta \right) = 0$$

.....(xciv).

But from Briggs's tables,

 $u_{-1} = \cdot 0905, 4019, 9754, 24,$ $u_{0} = \cdot 0905, 7545, 5222, 21,$ $u_{+1} = \cdot 0906, 1070, 7828, 41,$ $u_{+2} = \cdot 0906, 4595, 7573, 32,$

whence

or,

$$\cdot 0001,4101,614786 \ \theta = \cdot 0000,4709,8713,16 + \theta^2 \times \cdot 0000,00005723,06.$$

 $\theta = \frac{.4709,8713,16}{1.4101,6147,86} + \theta^2 \frac{.0000,5723,06}{1.4101,6147,86}$

* $\frac{\pi}{2} = 1.570796,326794,8966; \log \frac{\pi}{2} = .196119,877030,1527.$

† Cambridge University Press, 1914.

To a first approximation

$$\theta_1 = \frac{\cdot 4709,8713,16}{1 \cdot 4101,6147} \left(1 - \frac{\cdot 0000,0000,86}{1 \cdot 4101,6147} \right),$$

arranging it thus as most machines cannot divide by more than *nine* figures. Hence

 $\theta_1 = \cdot 3339,9517,625.$

Substitute in the θ^2 term and we find

 $\theta_2 = \cdot 3339,9970,356,$

or the value of $q_{104} = \cdot 1231,9333,9997$ to twelve figures. Found by the continuous process it was $\cdot 1231,9333,9996$, so that the value tabled is correct to the tenth figure.

TABLE	X.	Values	of	t h e	Integral	$q_n =$	$\int_{0}^{\frac{\pi}{2}} \sin^{n-1}$	$\phi d\phi =$	$\int_{0}^{\frac{1}{2}}$	$\cos^{n-1}\phi d\phi.$
-------	----	--------	----	--------------	----------	---------	---------------------------------------	----------------	--------------------------	-------------------------

n	<i>q</i> n	n	In	n	In
1	1.5707,9632,68	36	·2103,4114,55	71	·1492,6566,48
2	1.0000,0000,00	37	·2074,4030,47	72	·1482,1822,53
3	$\cdot 7853, 9816, 34$	38	·2046,5624,97	73	$\cdot 1471,9253,06$
4	·6666,6666,67	39	·2019,8134,93	74	·1461,8783,86
5	$\cdot 5890, 4862, 25$	40	·1994,0865,35	75	$\cdot 1452,0344,23$
6	·5333,3333,33	41	·1969,3181,56	76	·1442,3866,74
7	·4908,7385,21	42	$\cdot 1945, 4502, 78$	77	$\cdot 1432,9287,07$
8	$\cdot 4571, 4285, 71$	43	$\cdot 1922, 4296, 29$	78	·1423,6543,80
9	$\cdot 4295, 1462, 06$	44	·1900,2072,49	79	·1414,5578,26
10	·4063,4920,63	45	$\cdot 1878,7380,46$	80	·1405,6334,38
11	·3865,6315,85	46	$\cdot 1857,9804,21$	81	·1396,8758,53
12	·3694,0836,94	47	$\cdot 1837, 8959, 15$	82	·1388,2799,39
13	$\cdot 3543, 4956, 20$	48	$\cdot 1818, 4489, 23$	83	·1379,8407,82
14	$\cdot 3409,9234,10$	49	$\cdot 1799,6064,16$	84	·1371,5536,75
15	·3290,3887,90	50	$\cdot 1781, 3377, 19$	85	·1363,4141,06
16	·3182,5951,83	51	$\cdot 1763, 6142, 88$	86	·1355,4177,49
17	·3084,7394,91	52	$\cdot 1746,4095,29$	87	·1347,5604,54
18	·2995,3837,01	53	$\cdot 1729,6986,29$	88	·1339,8382,35
19	·2913,3650,74	54	·1713,4584,06	89	·1332,2472,67
20	·2837,7319,28	55	$\cdot 1697, 6671, 73$	90	·1324,7838,73
21	$\cdot 2767,6968,21$	56	$\cdot 1682,3046,16$	91	·1317,4445,19
22	$\cdot 2702,6018,36$	57	$\cdot 1667, 3516, 87$	92	·1310,2258,08
23	$\cdot 2641,8924,20$	58	$\cdot 1652,7905,00$	93	·1303,1244,70
24	$\cdot 2585,0974,08$	59	$\cdot 1638,6042,44$	94	$\cdot 1296, 1373, 58$
25	·2531,8135,69	60	$\cdot 1624,7771,02$	95	·1289,2614,44
26	$\cdot 2481,6935,12$	61	$\cdot 1611, 2941, 74$	96	·1282,4938,07
27	2434,4361,24	62	$\cdot 1598, 1414, 12$	97	$\cdot 1275,8316,37$
28	$\cdot 2389,7789,37$	63	$\cdot 1585, 3055, 58$	98	$\cdot 1269, 2722, 22$
29	$\cdot 2347, 4919, 77$	64	$\cdot 1572,7740,88$	99	$\cdot 1262, 8129, 47$
30	·2307,3727,67	65	1560,5351,59	100	$\cdot 1256, 4512, 90$
31	$\cdot 2269, 2422, 44$	66	·1548,5775,63	101	$\cdot 1250, 1848, 17$
32	·2232,9413,87	67	1536,8906,87	102	·1244,0111,78
33	$\cdot 2198, 3284, 24$	68	$\cdot 1525,4644,65$	103	$\cdot 1237, 9281, 04$
34	$\cdot 2165,2764,98$	69	$\cdot 1514,2893,53$	104	·1231,9334,00
35	·2133,6717,06	70	·1503,3562,85	105	$\cdot 1226,0249,49$
		7	1		

Biometrika xı

Something corresponding to the above process must be used for values of q_n with n > 105, if we require the function correct to ten or twelve figures. The usual approximate formulae for the factorial, or for the Γ -function, do not converge rapidly enough and generally give the logarithm, so that they really involve the use of the logarithm tables to 14 places and the antilogarithm process.

For values of 100 and upwards the following formula will be found good:

For n even we deduce by Stirling's Theorem from Eqn. (xcii)

$$q_n = \frac{1 \cdot 2533,1413,7315}{\sqrt{n}} \left(1 + \frac{\cdot 25}{n} + \frac{\cdot 03125}{n^2} - \frac{\cdot 039,0625}{n^3} - \frac{\cdot 0102,5390,625}{n^4} \right) \text{ (xcv)}.$$

For example, n = 100

$$\begin{split} q_{100} &= 1.2533, 1413, 7315 \times \cdot 1002, 5031, 64165, \\ &= \cdot 1256, 4512, 9017, 89, \end{split}$$

which is correct to twelve places.

For n odd we deduce by Stirling's Theorem from Eqn. (xcii) by somewhat more lengthy algebra precisely the same value.

[Owing to the growth of this memoir far beyond its original limits, it has been found impossible to include in this first portion the experimental work which accompanied the algebraical investigations, nor to give illustrations of the various uses which the tables serve. These matters are therefore reserved for a continuation of this memoir, which will appear later.]

APPENDIX.

CORRELATION IN SMALL SAMPLES.

TABLE A. Ordinates and Constants of Frequency Curves*.

n=3 ρ variate (correlation in population sampled).

ī		1		. 1				. 1			
		0	•1	•2	•3	•4	•5	•6	•7	•8	$\cdot g$
	_ 1.00	~		~	~	~	~	~	~	~	~
	- 100	1010.11	974.00	744.91	694.97	515.95	412.07	210.02	929.10	150.04	79.99
	30	1019.41	014.99	F40.90	456.01	977 79	204.70	019.94	179.05	111 40	14.04 E4.95
	90	130.25	031.33	040 20	400.01	311.13	304.70	230.31	172.00	111.49	34.23
	85	604.25	526.19	453.08	384.48	319.97	259.17	201.74	147.37	95.78	40.73
	80	530.52	465.35	403.21	344.03	287.69	234.02	182.85	134.03	87.38	42.75
	75	481.24	425.22	370.79	318.13	267.34	218.43	171.35	126.04	82.44	40.45
	70	445.72	396.74	348-18	300.44	253.76	208.27	164.05	$121 \cdot 12$	79.49	39.12
	65	418.87	375.59	331.78	287.95	244.48	201.60	159.47	118.20	77.84	38.44
	60	397.89	359.43	319.60	279.03	238.18	197.36	156.81	116.70	77.14	38.22
	- •55	381.13	346.87	310.50	272.73	234.08	194.94	155.60	116.29	77.18	38.38
	50	367.55	337.02	303.74	268.44	231.71	193.97	155.57	116.79	77.82	38.85
	- •45	356.44	$329 \cdot 29$	298.82	265.77	230.74	194·20	156.54	118.06	79.02	39.61
	40	347.30	$323 \cdot 28$	295.41	264.44	230.97	195.48	158.40	120.05	80.72	40.63
	35	339.80	318.70	293.29	264.28	$232 \cdot 26$	197.72	161.09	122.71	82.91	41.93
	30	333.68	315.35	292.30	265.17	234.53	200.85	164.58	126.05	85.60	43.51
÷.	25	328.75	313.08	292.30	267.01	237.71	204.86	168.86	130.08	88.82	45.38
-ð.	20	294.97	311.77	202.94	260.76	241.70	209.74	173.07	134.82	92.59	47.57
a	- 20	221.05	211.26	205.05	273.30	946.77	215.51	170.04	140.33	96.98	50.12
aı	10	321.93	311.30	295.05	213.39	240.11	210.01	106.00	146.60	109.04	52.02
2 2	10	319.91	311.90	297.71	277.91	252.00	222.22	100.02	140.09	102.04	56.51
. <u>e</u>	- 05	318.71	313.06	301.21	283.32	209.01	229.93	194.72	103.99	107.00	80.49
	•00	318.31	315.13	305.58	289.66	267.38	238.73	203.72	162.34	114.99	00.48
5	+ .05	318.71	318.02	310.83	296.99	276.35	248.73	213.97	171.89	122.33	65.09
. E	$+ \cdot 10$	319.91	321.75	317.02	305.38	286.51	260.05	225.63	182.84	131.27	70.48
ja ja	$+ \cdot 15$	321.95	326.39	324.22	314.94	298.02	272-89	238.91	195.41	141.63	76.79
re	+ .20	324.87	331.99	$332 \cdot 52$	325.79	311.04	287.45	254.08	209.89	153.71	84.24
5	$+ \cdot 25$	328.75	338.66	342.06	338.10	325.78	304.00	271.45	226.66	167.88	93.11
్ర	+ .30	333.68	346.53	353.00	352.08	342.52	322.88	291.45	246.18	184.60	103.75
e	$+ \cdot 35$	339.80	355.76	365.56	368.00	361.58	344.53	314.60	269.08	204.53	116.66
at	$+ \cdot 40$	347.30	366.59	380.02	386.21	383.43	369.48	341.59	296.15	228.52	132.54
ri	$+ \cdot 45$	356.44	379.33	396.75	407.18	408.63	398.48	373.30	328.48	257.73	152.34
٧a	+ .50	367.55	394.39	416.27	431.53	437.95	432.48	410.96	367.53	293.80	177.48
-	+ .55	381.13	412.36	439.27	460.12	472.45	472.82	456.23	415.36	339.09	210.05
r	+ .60	307.90	434.08	466.77	494.15	513.63	521.35	511.47	474.92	397.07	253.32
	+ .65	419.97	460.91	500.25	535.44	563.68	580.81	580.15	550.63	473.12	312.61
	+ .70	410.07	404.50	542.05	596.77	626-01	655.44	667.63	649.38	575.90	396.99
	+ 70	440-72	294.00	506.05	659.77	706.22	759.17	789.79	782.63	720.25	523.20
	+ 70	401.24	000.40	660.07	741.01	014.50	002.10	041.91	071.06	022.95	794.04
	+ .80	530.52	598.03	009.27	741.91	071 02	1074.00	941.21	1956.00	1974.71	1070.64
	+ .85	604.25	687.68	776.82	871.73	971.83	10/4.99	1175.29	1200.00	12/4.71	1079.04
	+ .90	730-25	838.25	956.77	1087.46	1232.06	1391.88	1200.09	1745.85	1890.70	1804.90
	+ .95	1019-41	1180-31	1361.48	1568.00	1806-93	2088.24	2426.12	2839.55	3341.78	3802.31
	+ 1.00	xo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	∞	80	œ	œ	x	80
	Mean	•0000	·0786	·1579	·2384	·3209	·4063	·4960	·5919	·6976	·8204
	Antimode	0000	1513	2755	3679	4354	4855	5239	5539	- •5779	- •5976
	σ	.7071	.7045	·6966	·6829	.6629	·6351	·5977	·5470	·4755	·3635
	(1 - 2)/1/m - 1	.7071	.7000	.6788	-6435	.5940	.5303	.4525	·3606	·2546	·1344
		.0000	.0280	.1159	.2799	.5206	-9018	1.5002	2.5105	4.5031	10.2226
		1.5000	1.5292	1.6320	1.8149	2.1011	2.5422	3.2363	4.4114	6.7388	13.4672
	P2	1.9000	1.0040	1 0020	10144	2 1011	2 0120	0 2000	1 1111	0.000	

* In all cases the total frequency of the curve is taken as 1000.

25-2

TABLE	А.	Ordinates	and	Constants	of	Frequency	Curves.
-------	----	-----------	-----	-----------	----	-----------	---------

n=4.

					1			1	1		
	- 1.00	500-00	386-33	295.47	222.28	163-11	115.34	77.06	46.93	24.03	8.02
	95	500.00	390.84	301.85	228.97	169.22	120.41	80-89	49 ·50	25.46	8.53
	90	500.00	395.43	308.42	235.94	175.66	125.79	84.99	52.27	27.01	9.09
	85	500.00	400.09	315.19	243.21	182.44	131.52	89.38	55.26	28.69	9.69
	80	500.00	404.83	322.17	250.79	189.59	137-61	94.10	58.49	30.52	10.36
	75	500.00	409.64	329.36	258.71	197.13	144.10	99.16	61.99	32.51	11.08
	70	500.00	414.54	336-78	266.97	205.09	151.02	104.61	65.79	34.69	11.89
	09	500.00	419·5Z	344.44	275.01	213.51	158.41	110.48	69.92	37.08	12.77
	00	500.00	424.00	302.34	284.04	991.95	100.31	110.82	74.41	19.50	14.09
	- 50	500.00	429.13	368.00	294.09	231.80	102.04	123.00	94.69	42.00	16.04
		500.00	434.90	308.90	214.29	241.04	103.04	120.16	00.56	40.99	17.20
	40	500.00	440-20	386.57	314.34	202.44	193.07	147.09	90.00	49.20	19.00
		500.00	451.20	305-84	326.54	205.65	20403	157.46	104.15	57.54	20.50
	30	500.00	456.80	405.43	348.48	288.38	227.44	167.88	112.01	62.40	20.51
·	25	500.00	462.50	415.34	361.01	301.94	240.55	179.28	1201	67.85	24.69
	- ·20	500.00	468.30	425.59	374.17	316-40	254.74	191.79	120-72	73.98	27.16
	15	500.00	474.19	436.20	388.01	331.84	270.11	205.53	141.20	80.91	29.90
	10	500.00	480.20	447.17	402.57	348.34	286.81	220.69	153.27	88.77	33.25
	05	500.00	486.30	458.53	417.89	366.00	304.96	237.43	166-83	97.73	37.02
	-00	500.00	492.52	470.30	434.04	384.94	324.76	256.00	182.11	108.00	41.41
	+ .05	500.00	498.85	482.49	451.07	405.26	346.38	276.64	199.40	119.83	46.56
	+ .10	500.00	505.29	495.13	469.04	427.09	370.06	299.67	219.05	133.53	52.64
	+ .15	500.00	511.84	508.23	488.02	450.60	396.04	$325 \cdot 45$	241.50	149.52	59.89
	+ •20	500.00	518.52	521.81	508.08	475.94	424 .63	$354 \cdot 41$	$267 \cdot 28$	168.29	68.60
	+ •25	500.00	525.31	535.90	529·31	503.31	456 ·16	387.08	297.05	190.49	79.17
-	+ •30	500-00	$532 \cdot 23$	550.53	551.79	532·91	491 .05	424.09	331.63	216.99	92 ·1{
	+ •35	500 ∙00	539.28	565.72	575.62	564·99	529.75	$466 \cdot 20$	372.07	248.90	108.29
	+ · 4 0	500.00	546.46	581.49	600.89	599 •81	572.82	514.35	419 .70	287.74	128.68
	+ •45	500.00	553.77	597.89	627.74	637.68	620-92	569.71	476·24	335.53	154.74
	+ •50	500.00	561.22	614.93	656-28	678-96	674·81	633·70	543.96	395.13	188.8
	+ •55	500.00	568.81	632.65	686·66	724.05	735.44	708.15	$625 \cdot 86$	470.54	234·3 4
	+ .60	500.00	576.54	651.09	719.03	773.41	803.91	795.33	725.97	567.57	296.69
	+ •05	500.00	584.41	670-29	753.55	827.57	881.57	898.20	849.83	694.88	384.78
	+ •70	500.00	592.44	690.28	790.43	887.15	970-08	1020.55	1005.20	865.74	514.0
	+ •75	500.00	000.02	711.11	829.80	952.87	10/1.44	1107.38	1203.12	1101.28	1007 0
	+ .00	500.00	617.46	755.47	8/2.0/	1025.55	1188.10	1540.30	1459-79	1430.01	1037.0
	+ ·00	500.00	696.13	770.10	065.09	1105.01	1323-35	1924.16	1799.04	1933.20	9751.0
	+ 90	500.00	634.07	803.76	1019.17	1906.09	1465.00	9174.90	2200.02	2000.04	5495.9
	+ 1.00	500.00	643.98	829.53	1074.43	1408.32	1884.66	2610.44	3835·42	6309.30	13781.4
	Mean	.0000	.0850	.1705	.2570	.3453	.4360	.5302	.6202	.7357	.854
	Mode Non-	existent	1	1 100		UTUU	1000	0004	0200		004
	σ	.5774	.5746	·5061	.5516	·5304	·5013	·4626	.4111	.3407	·236
	$(1 - o^2)/\sqrt{n - 1}$.5774	-5716	.5542	.5254	-4950	.4220	.3605	.2011	.2079	.100
	<i>R</i> .	.0000	.0314	.1205	-3060	-5905	1.0982	1.7994	2.0409	5.4990	13.194
	B.	1.8000	1.8399	1.9647	2.1907	2.5522	3.1163	4.0230	5.6093	8.9222	19.571

,

TABLE A-(continued).

n = 5.

		0	·1	•2	.3	•4	.5	•6	-7	•8	.9
	- 1.00	•00	•00	•00	•00	•00	•00	•00	•00	•00	•00
	- •95	198.78	141.35	99.03	67.80	44.87	28.25	16.49	8.50	3.48	·80
	90	277.50	200.54	142.43	98 .66	65.96	41.90	24.65	12.79	5.27	1.22
	85	335.36	246.33	177.39	124.35	84 ·01	53.86	31.94	16.70	6.92	1.62
	80	381.97	285.19	208.27	147.80	100.93	65.32	39.06	20.58	8.59	2.02
	75	421.08	319.60	236.74	170.10	117.44	76.75	46.30	24.59	10.33	2.45
	70	454.64	350.80	263.63	191.85	133-96	88.43	53.84	28.82	12.20	2.91
	65	483.79	379.53	289.41	213.36	150.72	100.55	61.79	33.37	14.24	3.42
	60	509.30	406.24	314.40	234.88	167.91	113.24	70-28	38.30	16.48	3.99
	55	531.68	431.25	338.80	256.56	185.68	126.63	79.40	43.68	18.96	4.62
	50	551.33	454.76	362.75	278.52	204.14	140.84	89.26	49.59	21.72	5.34
	- •45	568.52	476.92	386.34	300.86	$223 \cdot 41$	156.00	99.98	56.12	24.82	6.16
	- ·40	583.47	497.83	409.64	323.65	243.58	172.23	111.67	63.37	28.32	7.10
	- •35	596.35	517.56	432.68	346 .96	264.76	189.65	124.47	71.45	$32 \cdot 27$	8.17
÷	- •30	607.30	536.16	455.50	370.82	287.04	208.40	138.53	80.49	36.78	9.41
le	25	616.40	553.64	478.09	395.29	310.51	228.62	154.02	90.65	41.92	10.86
I	20	623.76	570.02	500.44	420.38	335-28	250.49	171.14	102.08	47.83	12.54
aı	15	629.42	$585 \cdot 27$	522.52	446.12	361.44	274.17	190.10	115.02	54.64	14.52
7 2	10	633.43	599.37	544.31	472.50	389.09	299.86	211.15	129.71	62.54	16.86
.u	05	635.82	612.28	565.73	499.53	418.31	327.76	234.60	146.44	71.74	19.65
a	•00	636.62	623.95	586.71	527.18	449.20	358.10	260.76	165.58	82.51	22.98
10	+ .05	635.82	634.31	607.16	555.41	481.84	391-13	290.03	187.57	95.19	27.01
at	+ .10	633.43	643.27	626.97	584.15	516.30	427.11	322.86	212.91	110.22	31.91
ſel	+ •15	629.42	650.74	645.99	613.31	552.05	400.33	359.76	242.26	128.14	37.93
E	+ .20	623.76	050.59	004.00	042.70	590.91	509.09	401.33	276.40	149.00	40.39
ૅ	+ •20	010.40	660 06	080-91 606.46	0/2.33	679.11	000.72	448.27	310.29	170.08	04.74
ക	+ .25	506.95	669.01	710.94	720.70	716.97	661.77	561.55	410.41	207.42	91.94
B, t	+ .10	590.30	660.60	791.05	759.09	769.14	791.75	620.83	410.41	240.48	101.75
·Ë	+ · <u>4</u> 0	569.59	655.66	721.14	795.91	808.54	786.69	707.37	400'90 569.17	255.02	198.18
Va	+ • • 50	551.33	647.74	737.25	810-60	855.49	856-39	795-39	655.88	433-30	163.98
5	+ .55	531.68	636.41	739.59	832.42	902.10	930.77	895-14	768.74	532.81	213.57
-	+ .60	509.30	621.15	737.29	850.06	947.05	1009.03	1007.71	905.20	662.54	284.13
	+ .65	483.79	601.26	729.21	861.85	988.36	1089.62	1133-68	1070-61	834.18	387.69
	+ .70	454-64	575.83	713.82	865.50	1023.03	1169.66	1272.51	1270.96	1064.70	545.45
	+ .75	421.08	543.59	689.01	857.73	1046.50	1243.92	1421.02	1511.86	1378.85	796.89
	$+ \cdot 80$	381.97	502.63	651.67	833.60	1051.45	1302.93	1570.47	1795.27	1811.55	1220.21
	+ .85	335.36	449.87	596.86	785.20	1025.58	1328.96	1699.62	2109.71	2406.01	1981-91
	+ .90	277.50	379.52	515.46	698.04	945.84	1286.02	1756.53	2398.74	3182.44	3457.80
	+ .95	198.78	277.21	385.59	538.03	757.76	$1085 \cdot 21$	$1595 \cdot 22$	2436.67	3917.02	6392.40
	+ 1.00	•00	•00	•00	•00	·00	•00	•00	•00	•00	•00
	Mean	-0000	·0884	$\cdot 1773$	$\cdot 2671$	$\cdot 3584$	·4517	·5480	·6482	·7541	·8687
	Mode	·0000	$\cdot 3264$	$\cdot 5520$	·6936	·7863	·8500	·8965	·9318	·9595	·9817
	σ	·5000	·4972	·4886	·4740	·4528	·4239	·3858	·3358	·2691	·1748
	$(1-\rho^2)/\sqrt{n-1}$	·5000	·4950	·4800	$\cdot 4550$	·4200	·3750	-3200	$\cdot 2550$	·1800	·0950
	β_1	•0000	·0315	$\cdot 1299$	·3077	·5909	1.0312	1.7297	2.9374	5.4065	13.0290
	β_2	2.0000	2.0429	2.1769	2.4201	2.8097	3.4191	4.4027	6.1333	9.7830	21.7579

TABLE A. Ordinates and Constants of Frequency Curves.

n = 6.

1							· · · · · · · · · · · · · · · · · · ·				
		0	·1	•2	•3	·4	•5	•6	•7	.8	. •9
	- 1.00	-00	·00	·00	•00	·00	·00	·00	·00	·00	····
	95	73.125	47.28	30.03	18.55	10.99	6.12	3.10	1.35	•44	.07
	90	142.500	94 .07	60.81	38.13	22.88	12.89	6.60	2.89	.95	·15
	85	208.125	140.28	92.30	58.76	35.74	20.37	10.54	4.66	1.54	.25
	80	270.000	$185 \cdot 83$	124.49	80.50	49.64	28.64	14.97	6.68	2.23	
	75	$328 \cdot 125$	230.63	157.34	103.38	64.65	37.76	19.96	9.00	3.03	·50
	70	$382 \cdot 500$	274.58	190.82	127.43	80.85	47.84	25.59	11.66	3.96	.66
	65	$433 \cdot 125$	317.59	224.87	152.69	98·33	58.96	31.92	14.71	5.05	.85
	60	480.000	359.54	259.44	179.18	117.16	71.24	39.06	18.20	6.32	1.07
	– ·55	$523 \cdot 125$	400.33	294.48	206.94	137.45	84.78	47.09	22.22	7.79	1.33
	50	562.500	439.82	329.89	235.97	$159 \cdot 29$	99.73	56.16	26.83	9.52	1.64
	- •45	$598 \cdot 125$	477.89	365.60	$266 \cdot 29$	182.79	116.21	66.38	32.13	11.55	2.02
	- •40	630.000	514.41	401.49	297.90	208.03	134.39	77.92	38.25	13.93	2.46
	<i>–</i> ∙35	$658 \cdot 125$	549.23	437.46	330-80	$235 \cdot 13$	154.44	90.95	45.31	16.73	3.00
-	30	$682 \cdot 500$	$582 \cdot 20$	473.37	364.95	264.20	176.55	105.68	53.47	20.03	3.64
le		703.125	613-16	509.07	400.33	295.32	200.93	122.35	62.92	23.94	4.41
d	20	720.000	641·93	544.37	436.88	328.62	227.80	141.22	73.89	28.59	5.35
an	- ·15	$733 \cdot 125$	668.33	579.08	474.49	364.17	257.41	162.61	86.65	34.12	6.50
ö	10	$742 \cdot 500$	692·18	612.97	513.07	402.05	290.01	186.88	101.53	40.75	7.91
<u> </u>	05	$748 \cdot 125$	713.27	645.79	$552 \cdot 46$	442.32	$325 \cdot 89$	214.44	118.92	48.71	9.65
-	·00	750.000	731.39	677.23	592.47	485.02	365.35	245.76	139.31	58.32	11.80
0	+ .05	$748 \cdot 125$	746.31	706-99	$632 \cdot 84$	530.14	408 ·70	281-39	$163 \cdot 28$	69.98	14.50
Ŀ.	$+ \cdot 10$	742.500	757.78	734.67	673-26	577.63	456.23	321.94	191.55	84·21	17.90
ele	$+ \cdot 15$	$733 \cdot 125$	765.56	759.87	713 ·34	627.35	508.26	368.14	224.98	101.67	$22 \cdot 24$
Ľ	$+ \cdot 20$	720.000	769.38	782.10	752.61	679-10	565.04	420.76	264.66	$123 \cdot 24$	27.81
00	$+ \cdot 25$	$703 \cdot 125$	768.94	800.84	790.47	732.53	626-81	480.72	311.90	150.07	35.06
3	$+ \cdot 30$	$682 \cdot 500$	763.96	815.48	826.21	787.15	693·69	548.97	368.33	183.69	44.60
te	+ •35	$658 \cdot 125$	754.11	825.36	858.93	842.24	765.62	$626 \cdot 56$	435.94	$226 \cdot 18$	57.33
ia.	$+ \cdot 40$	630-000	739.06	829.70	887.57	896.80	842.35	714.54	517.20	280.35	74.61
ar	$+ \cdot 45$	598.125	718.45	827.66	910.82	949.48	923.20	813.87	615.10	350.06	98 ·48
Þ	+ .50	$562 \cdot 500$	691.90	818.27	927.11	998.43	1006.98	925.29	733-19	440.67	$132 \cdot 11$
r	+ .55	$523 \cdot 125$	659.02	800.46	934 .53	1041.18	1091.61	1048.92	875.62	559.69	180.65
	+ .60	480.000	619.39	772.99	930.76	1074.42	1173.81	$1183 \cdot 82$	1046.92	717.69	$252 \cdot 62$
	+ .65	$433 \cdot 125$	572.56	734.52	913.01	1093.74	1248.41	1326.99	1251.36	929.54	362.77
	+ .70	$382 \cdot 500$	518.05	683·50	877.89	1093.27	1307.53	1471.73	1491.35	$1215 \cdot 82$	537.74
	+ .75	$328 \cdot 125$	455.38	618.19	821.29	1065.22	$1339 \cdot 14$	$1604 \cdot 80$	1763.58	$1603 \cdot 56$	828.01
	+ .80	270.000	384.02	536.66	738.25	999.24	$1325 \cdot 11$	1701.20	2050.08	2122.58	1334.30
	+ .85	208.125	303.41	436.70	622.74	881.50	1237.97	1714.92	2297.17	2783.31	2265.98
	+ •90	142.500	212.95	315.86	467.45	693 .60	1036.09	1561.73	2364.83	3479.97	4043.96
	+ .90	73.125	112.04	171.33	263.48	410.83	655.98	1086.58	1899-93	$3578 \cdot 10$	7013.72
	+ 1.00	•00	•00	•00	•00	•00	•00	•00	•00	•00	•00
	Mean	.0000		1010	0704	2007					
	Mode	.0000	.0900	.1910	•2/34	.3005	•4614	•5587	•6594	•7646	·8766
	moue	.4479	-2197	1960	.9988	.0747	•7630	•8321	•8870	•9319	·9689
i	(1 2) (4/	.44/2	•4444	•4300	·4216	•4007	·3725	·3356	·2878	·2253	·1397
	$(1 - p^{*})/\sqrt{n} - 1$	·4472	•4427	•4293	·4070	·3757	$\cdot 3354$	$\cdot 2862$	$\cdot 2281$	·1610	.0850
	β_1	·0000	•0304	•1251	·2959	·5667	·9838	1.6418	2.7599	4.9848	11.4554
	/3 ₂	2.1429	2.1863	2.3222	2.5682	2.9615	3.5746	4.5585	6.2752	9.8417	$21 \cdot 1653$

TABLE A—(continued).

n = 7.

	C			1	······	T					
	· ·	0	•1	•2	•3	•4	.5	•6	-7	-8	.9
	- 1.00	·00	·00	00	•00	·00	·00	·00	·00	·00	·00
	95	25.84	15.19	8.75	4.87	2.58	1.27	$\cdot 56$	·20	$\cdot 05$	·01
	90	70.30	42.38	24.93	14.14	7.62	3.81	1.69	·63	·16	·02
	80	124.08	76.72	46.12	26.66	14.60	7.39	3.34	1.25	•33	•04
	80	183.35	116.30	71.46	42.10	23.44	12.05	5.51	2.08	•56	•06
	75	245.63	159.85	100.42	60.33	34.17	17.84	8.26	3.16	.85	•10
	70	309.15	206.44	132.64	81.28	46.85	24.84	11.67	4.53	1.24	•14
	00	372.52	255.27	167.80	104.93	61.59	33.20	15.83	6.22	1.72	·20
	00	434.60	305.66	205.61	131.26	78.49	43.03	20.83	8.30	2.32	·27
	55	494.46	356.96	245.82	160.28	97.70	54.50	26.81	10.85	3.08	•37
	50	551.33	408.59	288.14	191.98	119.36	67.80	33.92	13.93	4.01	•49
	40	604.53	459.99	332.29	220.34	143.61	83.12	42.31	17.66	5.16	•63
	40	607 79	510.59	377.90	203.34	170.62	100.70	52.20	22.16	6.58	·82
	00	091.13	07.99	424.83	302.91	200.54	120.78	63.81	27.58	8.32	1.05
<u>.</u>	00	730.85	659.29	412.03	344.98	233.54	143.04	77.42	34.10	10.48	1.35
ď	- 20	709.41	604.44	569.91	426.10	209.11	109.00	93.33	41.94	13.13	1.72
B	15	190.41	799.15	616.47	430.10	309.30	198.97	111.92	51.30	10.41	2.19
Sa	10	826.12	767.01	663.12	535.18	300.06	252.12	159.97	76.22	20.47	2.56
~	05	845.65	708.94	708.17	586.05	440.90	209.42	198.90	09.77	20.00	4.55
.=	.00	848.83	823.62	750.99	639.65	503.10	258.10	999.51	119.60	30.60	5.99
n	+ .05	845.65	843.56	790.87	692.72	560.37	410.20	262 20	126.56	40.43	7.48
Ĕ	+ .70	836-13	857.59	827.06	745.49	620.88	468.23	308.46	165.58	61.82	9.65
la.	$+ \cdot 15$	820.34	865.26	858.73	797.15	684.25	532.27	361.98	200.77	77.52	12.53
re	$+ \cdot 20$	798.41	866.13	884.99	846.70	749.91	602.63	423.92	243.54	97.54	16.38
0	$+ \cdot 25$	770.51	859.80	904.89	893.00	817.07	679.42	495.43	295.61	123.21	21.58
્	+ .30	736.85	845.93	917.44	934·67	884·59	762.49	577.72	359.10	156.38	28.71
e	+ •35	697.73	824·21	921.57	970.10	950.96	851·33	671.98	436.64	199-53	38.62
la l	$+ \cdot 40$	$653 \cdot 49$	794 ·40	916.22	997·43	1014.18	944·93	779.26	531·38	256.18	52.62
"ari	$+ \cdot 45$	604.53	756-38	900.29	1014.55	1071.64	1041.52	900.25	647.10	331.09	72.76
Þ	+ .50	551.33	710.11	872.71	1019-07	1120.03	1138.25	1034-91	788.14	431.03	102.38
٤	+ .55	494.46	655.69	$832 \cdot 49$	1008.34	$1155 \cdot 12$	1230.82	1181.85	959·18	565.53	147.00
	$+ \cdot 60$	434.60	593.44	778.80	979.51	1171.74	$1312 \cdot 87$	1337.35	1164.60	747.90	216.12
	+ .65	$372 \cdot 52$	523.87	711.02	929.65	1163.57	1375.33	$1493 \cdot 80$	1406.95	996.60	326.69
	+ .70	309.15	447.82	628.96	855.90	1123.23	$1405 \cdot 52$	$1637 \cdot 17$	1683.53	1336.03	510.28
	+ .75	245.63	366.56	533.05	755.92	$1042 \cdot 49$	1386.41	1743.33	1979.38	$1794 \cdot 82$	828.27
	+ .80	183.35	281.92	424.74	$628 \cdot 49$	913.07	1296.13	1772.80	2252.77	2393.94	1404.91
	+ .85	124.08	196.62	307.09	474.80	728.55	1109.20	1664.80	$2407 \cdot 27$	3099.80	$2495 \cdot 12$
	+ •90	70.30	114.82	186.02	300.94	489.11	802.95	1336.07	2244.07	$3664 \cdot 14$	$4555 \cdot 85$
	+ .95	25.84	43.51	73.17	124.05	214.20	381.46	712.23	$1426 \cdot 14$	3147.79	7414.56
	+ 1.00	•00	•00	•00	•00	•00	•00	•00	•00	•00	•00
	36	0000	000-	10.15	0						
	Mean	•0000	•0921	·1845	·2777	·3720	$\cdot 4678$	·5658	·6667	.7713	·8814
	Mode	•0000	·1813	·3484	•4919	·6106	·7087	·7894	·8563	·9122	·9595
	σ	·4082	·4055	·3973	·3832	·3629	·3356	·3001	·2545	·1958	·1175
	$(1 - \rho^2)/\sqrt{n - 1}$	$\cdot 4082$	$\cdot 4042$	-3919	$\cdot 3715$	$\cdot 3429$	$\cdot 3062$	$\cdot 2613$	$\cdot 2082$	$\cdot 1470$	·0776
	β_1	•0000	•0288	·1186	·2798	·5340	·9222	1.5263	2.5318	4.4611	9.6408
	β_2	2 ∙2500	2.2929	2.4267	2.0080	3.0232	3.6203	4.5968	6.2238	9.5129	19.3424
			F					F .			

TABLE	A .	Ordinates	and	Constants	of	Frequency	Curves.
-------	------------	-----------	-----	-----------	----	-----------	---------

n = 8.

 ρ variate (correlation in population sampled).

	0	•1	2	.3	•4	•5	•6	.7	-8	.9
- 1.00	•00	·00	•00	•00	•00	·00	•00	·00	.00	.00
95	8.91	4.76	2.49	1.25	.59	·26	.10	.03	.01	.00
- •90	33.84	18.63	9.97	5.12	2.47	1.10	.42	.13	.03	.00
85	72.19	40.95	22.48	11.80	5.82	2.62	1.03	.33	.07	.01
80	121.50	71.02	40.02	21.48	10.80	4.95	1.98	.63	.13	.01
75	179.44	108.11	62.53	34.34	17.61	8.22	3.33	1.08	.23	.02
70	243.84	151.45	89.96	50.58	26.48	12.58	5.19	1.71	.38	.03
65	312.66	200.21	122.17	70.35	37.63	18.23	. 7.66	2.57	.57	-05
60	384.00	253.56	158.99	93.82	51.30	25.35	10.84	3.69	.83	.07
- ·55	456.10	310.59	200.22	121.13	67.75	34.18	14.89	5.16	1.18	.10
50	527.34	370.40	245.57	152.40	87.25	44.96	19.98	7.06	1.64	.14
45	596-26	432.05	294.69	187.72	110.08	58.00	26.31	9.47	2.25	.19
40	661.50	494·55	347.19	227.13	136.53	73.61	34.12	12.53	3.03	.27
- •35	721.88	556.91	402.57	270.64	166.89	92.15	43.68	16.38	4.04	.36
30	776.34	618.14	460.28	318.19	201.43	114.03	55.33	21.22	5.34	.49
25	823.97	677.22	519.66	369.65	240.45	139.67	69.47	27.27	7.03	.66
20	864.00	733.11	579-99	424.79	284.17	169.57	86.55	34.83	9.19	-88
15	895.79	784.83	640.42	483.31	332.81	204.24	107.11	44.26	11.98	1.17
10	918·84	831.37	700.04	544·75	386.52	244.24	131.79	56.00	15.57	1.57
05	$932 \cdot 82$	871.77	757.84	608.54	445 ·36	290.13	161.34	70.61	20.22	2.09
•00	937.50	905.10	812.68	673.93	509.27	342.52	196.61	88-81	26.24	2.80
+ .05	$932 \cdot 82$	930-49	863.38	740.00	578.06	401.96	238.59	111.47	34.07	3.77
$+ \cdot 10$	918.84	947.15	908.63	805.60	651.31	468.99	288.43	139.69	44·29	· 5.08
$+ \cdot 15$	895.79	954.37	947.08	869.36	728.36	544.03	347.39	174.87	57.69	6.89
$+ \cdot 20$	864.00	951.55	977.31	929.66	808.23	627.31	416.87	218.74	75.35	9.42
+ •20	823.97	938.24	997.87	984 .60	889.50	718-81	498.39	273.48	98.76	12.97
+ .30	776.34	914.13	1007.32	1031.99	970.27	818.08	593·47	341.77	129.97	18.05
+ .30	721.88	879.12	1004.28	1069-38	1048.02	924:04	703.52	426.94	171.88	25.40
+ 40	506.90	833.34	987.47	1094.05	1119.51	1034.75	829.63	532.99	228.55	36.23
+ 40	590.20	777.15	955.78	1103.06	1180.66	1147.03	972.16	664·66	305.76	52.50
+ .55	527.34	711.20	908.44	1093.37	1226.48	1256.06	1130.10	827.21	411.69	77.48
+ .60	400.10	030.70	845.06	1061.99	1251.03	1354.86	1300.15	1025.98	558.02	116.83
+ .65	212.66	004.91	705.85	1006-21	1247.49	1433.64	1475.18	1265.10	761.16	180.59
+ .70	949.94	407.80	564.00	924.01	1208.40	1479.32	1642.00	1544.83	1043.60	287.38
+ 75	170.44	377.81	304.92	814.99	1120.04	1475.21	1778.44	1856-10	1434.02	473.04
+ .80	191.50	201.91	448.00	599.20	990.09	1401.54	1849.45	2169.84	1962.40	809.47
+ .85	79.10	194.96	910.70	252.40	-014-01	1237.97	1804.24	2418.01	2637.69	1445:38
+ .90	33.84	60.49	106.04	190.15	226.77	970.50	10/8.40	2404.22	3372.91	2684.78
+ .95	8.01	16.40	20.50	57.09	100.05	007.09	1110.43	2080-31	3709.08	5016.00
+ 1.00	-00	.00	.00	.00	103.00	210.05	400.02	1049.89	2700.04	1001.10
			-00	.00	-00	.00	•00	.00	•00	•00
Mean	-0000	·0932	.1867	·2808	.3759	.4725	.5709	.6718	.7760	.9947
Mode	·0000	·1613	·3135	·4505	.5698	.6722	.7594	-8338	-8075	.0594
σ	·3780	·3753	·3673	·3536	.3339	·3074	·2733	·2299	.1746	.1094
$(1 - \rho^2)/\sqrt{n-1}$	·3780	·3742	·3628	.3439	·3175	.2835	.2410	.1928	.1361	.0710
β	•0000	$\cdot 0272$	·1117	·2630	.5000	-8586	1.4088	2.3044	3.9581	8.0434
β_2	2.3333	2.3751	2.5051	2.7393	3.1101	3.6800	4.5751	6.0839	9.0368	17.2512
1								2 0000	2 0000	

r variate (correlation in sample).

TABLE A—(continued).

n = 9.

			-								
		0	·1	•2	•3	•4	·5.	·6	.7	.8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\42\\30\\35\\30\\35\\30\\35\\30\\35\\30\\25\\30\\35\\30\\35\\30\\35\\ +.40\\ +.15\\ +.25\\ +.30\\ +.35\\ +.40\\ +.45\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.85\\ +.90\\ +.95\end{array}$	0 .00 3.02 16.03 41.32 79.21 128.96 189.20 258.15 333.77 413.87 496.20 578.53 658.72 734.71 804.64 866.82 919.77 962.26 993.32 1012.24 1018.59 1012.24 993.32 1012.24 993.32 902.26 919.77 866.82 804.64 734.71 658.72 578.53 496.20 413.87 333.77 258.15 189.20 128.96 79.21 41.32 16.03 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 128.96 79.21 138.77 101.224 101.244 101.244 101.244 101.244 101.244 101.244 101.244	$\cdot 1$ $\cdot 00$ $1 \cdot 47$ $8 \cdot 06$ $21 \cdot 50$ $42 \cdot 66$ $71 \cdot 93$ $109 \cdot 29$ $154 \cdot 47$ $206 \cdot 90$ $265 \cdot 84$ $330 \cdot 31$ $399 \cdot 18$ $471 \cdot 20$ $544 \cdot 95$ $618 \cdot 94$ $691 \cdot 611$ $761 \cdot 33$ $826 \cdot 48$ $885 \cdot 42$ $936 \cdot 57$ $978 \cdot 46$ $1009 \cdot 68$ $1029 \cdot 05$ $1035 \cdot 54$ $1028 \cdot 411$ $1007 \cdot 20$ $971 \cdot 79$ $922 \cdot 48$ $859 \cdot 99$ $78 \cdot 554$ $700 \cdot 855$ $608 \cdot 222$ $510 \cdot 466$ $410 \cdot 966$ $313 \cdot 588$ $222 \cdot 577$ $142 \cdot 399$ $77 \cdot 388$ $31 \cdot 288$ $6 \cdot 157$	$\cdot 2$ $\cdot 00$ $\cdot 69$ $3 \cdot 92$ $10 \cdot 78$ $22 \cdot 04$ $38 \cdot 30$ $60 \cdot 01$ $87 \cdot 49$ $120 \cdot 93$ $160 \cdot 41$ $205 \cdot 86$ $257 \cdot 08$ $313 \cdot 71$ $375 \cdot 25$ $441 \cdot 03$ $510 \cdot 20$ $581 \cdot 74$ $654 \cdot 46$ $726 \cdot 99$ $797 \cdot 78$ $865 \cdot 14$ $927 \cdot 20$ $982 \cdot 02$ $1027 \cdot 55$ $1061 \cdot 74$ $1082 \cdot 54$ $1082 \cdot 54$ $1088 \cdot 08$ $1076 \cdot 68$ $1047 \cdot 61$ $998 \cdot 27$ $930 \cdot 34$ $843 \cdot 95$ $740 \cdot 94$ $624 \cdot 47$ $499 \cdot 21$ $371 \cdot 51$ $249 \cdot 41$ $142 \cdot 36$ $60 \cdot 49$ $122 \cdot 51$	$\begin{array}{r} \cdot 3 \\ \hline 00 \\ \cdot 31 \\ 1\cdot 82 \\ 5\cdot 14 \\ 10\cdot 78 \\ 19\cdot 23 \\ 30\cdot 95 \\ 46\cdot 39 \\ 65\cdot 95 \\ 90\cdot 03 \\ 118\cdot 99 \\ 153\cdot 13 \\ 192\cdot 70 \\ 237\cdot 86 \\ 288\cdot 69 \\ 345\cdot 14 \\ 407\cdot 03 \\ 473\cdot 98 \\ 545\cdot 46 \\ 620\cdot 65 \\ 698\cdot 50 \\ 777\cdot 65 \\ 856\cdot 41 \\ 932\cdot 73 \\ 1004\cdot 19 \\ 1068\cdot 00 \\ 1121\cdot 01 \\ 1159\cdot 76 \\ 1180\cdot 62 \\ 1179\cdot 91 \\ 1154\cdot 15 \\ 1100\cdot 46 \\ 1016\cdot 99 \\ 903\cdot 63 \\ 762\cdot 81 \\ 600\cdot 46 \\ 427\cdot 14 \\ 258\cdot 83 \\ 116\cdot 98 \\ 25\cdot 79 \end{array}$	$\begin{array}{r} \cdot 4 \\ \hline & \cdot 00 \\ \cdot 13 \\ \cdot 79 \\ 2 \cdot 28 \\ 4 \cdot 89 \\ 8 \cdot 93 \\ 14 \cdot 72 \\ 22 \cdot 61 \\ 32 \cdot 98 \\ 46 \cdot 21 \\ 62 \cdot 73 \\ 83 \cdot 00 \\ 107 \cdot 46 \\ 136 \cdot 60 \\ 170 \cdot 90 \\ 210 \cdot 81 \\ 256 \cdot 77 \\ 309 \cdot 16 \\ 368 \cdot 27 \\ 434 \cdot 27 \\ 507 \cdot 13 \\ 586 \cdot 61 \\ 672 \cdot 14 \\ 762 \cdot 75 \\ 856 \cdot 97 \\ 952 \cdot 68 \\ 1047 \cdot 05 \\ 1136 \cdot 34 \\ 1215 \cdot 85 \\ 1279 \cdot 81 \\ 1321 \cdot 44 \\ 1333 \cdot 12 \\ 1306 \cdot 81 \\ 1234 \cdot 97 \\ 1111 \cdot 97 \\ 936 \cdot 53 \\ 715 \cdot 16 \\ 466 \cdot 86 \\ 228 \cdot 19 \\ 54 \cdot 64 \end{array}$	$\cdot 5$. $\cdot 00$ $\cdot 05$ $\cdot 31$ $\cdot 91$ $2 \cdot 00$ $3 \cdot 72$ $6 \cdot 27$ $9 \cdot 85$ $14 \cdot 69$ $21 \cdot 08$ $29 \cdot 33$ $39 \cdot 81$ $52 \cdot 93$ $69 \cdot 16$ $89 \cdot 03$ $113 \cdot 15$ $142 \cdot 16$ $176 \cdot 78$ $226 \cdot 02$ $322 \cdot 29$ $387 \cdot 41$ $462 \cdot 13$ $547 \cdot 03$ $642 \cdot 43$ $748 \cdot 20$ $863 \cdot 56$ $986 \cdot 80$ $1114 \cdot 86$ $1242 \cdot 93$ $1363 \cdot 83$ $1467 \cdot 50$ $1540 \cdot 47$ $1565 \cdot 77$ $1563 \cdot 62$ $1394 \cdot 27$ $1163 \cdot 62$ $835 \cdot 66$ $452 \cdot 62$ $121 \cdot 08$	-6 -00 -02 -10 -31 -70 $1\cdot32$ $2\cdot27$ $3\cdot64$ $5\cdot55$ $8\cdot14$ $11\cdot58$ $16\cdot09$ $21\cdot93$ $29\cdot41$ $38\cdot90$ $50\cdot86$ $65\cdot83$ $8\cdot46$ $107\cdot54$ $135\cdot99$ $170\cdot89$ $213\cdot52$ $265\cdot33$ $327\cdot98$ $403\cdot32$ $493\cdot28$ $599\cdot83$ $724\cdot70$ $869\cdot09$ $1032\cdot99$ $1214\cdot32$ $1407\cdot47$ $1601\cdot27$ $1776\cdot21$ $1901\cdot22$ $1930\cdot95$ $1807\cdot20$ $1472\cdot97$ $918\cdot20$ $287\cdot39$	$\begin{array}{r} \cdot 7 \\ & \cdot 00 \\ \cdot 00 \\ \cdot 03 \\ \cdot 08 \\ \cdot 19 \\ \cdot 37 \\ \cdot 64 \\ 1 \cdot 04 \\ 1 \cdot 62 \\ 2 \cdot 42 \\ 3 \cdot 52 \\ 4 \cdot 99 \\ 6 \cdot 97 \\ 9 \cdot 57 \\ 12 \cdot 99 \\ 17 \cdot 45 \\ 23 \cdot 24 \\ 4 \cdot 99 \\ 17 \cdot 45 \\ 23 \cdot 24 \\ 30 \cdot 73 \\ 4 \cdot 41 \\ 52 \cdot 88 \\ 68 \cdot 91 \\ 89 \cdot 51 \\ 115 \cdot 94 \\ 149 \cdot 85 \\ 193 \cdot 30 \\ 248 \cdot 93 \\ 320 \cdot 04 \\ 410 \cdot 75 \\ 526 \cdot 05 \\ 671 \cdot 79 \\ 854 \cdot 38 \\ 1079 \cdot 97 \\ 1352 \cdot 44 \\ 1669 \cdot 36 \\ 2014 \cdot 01 \\ 2341 \cdot 13 \\ 2554 \cdot 55 \\ 2482 \cdot 96 \\ 1898 \cdot 32 \\ 755 \cdot 00 \end{array}$	$\begin{array}{r} \cdot 8 \\ \hline 00 \\ \cdot 00 \\ \cdot 00 \\ \cdot 00 \\ \cdot 01 \\ \cdot 03 \\ \cdot 06 \\ \cdot 11 \\ \cdot 19 \\ \cdot 29 \\ \cdot 45 \\ \cdot 66 \\ \cdot 96 \\ \cdot 9$	$\begin{array}{c} .9\\ \hline \\ .00\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$
	+ .95 + 1.00	3·02 •00	6·15 ·00	·00	·00	54·64 .00	·00	287-39 -00	755∙00 •00	2290-26 -00	·00
	$ \begin{array}{c} & \underline{\text{Mean}} \\ & \underline{\text{Mode}} \\ \sigma \\ (1 - \rho^2) / \sqrt{n-1} \\ & \beta_1 \\ & \beta_2 \end{array} $	·0000 ·0000 ·3536 ·3536 ·0000 2·4000	·0940 ·1492 ·3510 ·3500 ·0256 2·4403	·1883 ·2920 ·3431 ·3394 ·1051 2·5657	·2832 ·4238 ·3298 ·3217 ·2468 2:7907	·3789 ·5420 ·3107 ·2670 ·4677 3·1456	·4760 ·6463 ·2852 ·2652 ·7983 3·6857	5747 7374 2524 2263 12989 45239	·6756 ·8168 ·2109 ·1803 2·0963 5·9099	·7793 ·8861 ·1586 ·1273 3·5152 8·5326	·8869 ·9467 ·0915 ·0672 6·7561 15·3136
					İ	1	}	1			

TABLE A. Ordinates and Constants of Frequency Curves.

n = 10.

.

 ρ variate (correlation in population sampled).

		0	•1	•2	•3	•4	•5	•6	-7	.8	.9
	-1.00 	·00 1·01	·00 ·45	·00 ·19	·00 ·08	·00 ·03	·00 ·01	·00 ·00	·00·	<u>-00</u>	·00
	90	7,50	3.44	1.53	.64	·25	.09	·03	·01		
	85	23.37	11.15	5.11	2.21	·88	•31	•09	•02	•00	-
	75	01.50	25.33	12·00 23·18	5·34 10.64	2.19	·80	•24	•06	•01	-
	70	145.09	77.94	39.56	18.72	8.09	3.09	-92	-12	.02	
	65	210.66	117.77	61.92	30.23	13.43	5.25	1.71	·42	·06	
	60	286.72	166.85	90.90	45.82	20.95	8.41	2.81	•70	·10	•00
	- •55	371.15	224.86	127.01	66.13	31.14	12.85	4.39	1.12	·17	·01
	00	401.43	291.10	170.55	91.82	44.57	18.91	6.63	1.73	•26	•01
	40	648.27	443.69	221.03	161.56	01.94	27.00	9.73	2.00	•41	.02
	35	739.03	526.99	345.68	206.59	110.50	51.00	19.56	5.52	.91	-04
	30	824.22	612.48	417.62	258.84	143.28	68.70	27.02	7.85	1.33	.06
le)	25	901.22	698·04	495.03	318.47	182.65	90.58	36.79	11.03	1.92	•09
du	20	967.68	781.38	576.65	385.42	229.29		49.48	15.32	2.76	•13
38.1	- ·10	1021.57	031.04	746.13	409.39	283.82	101.04	65.82	21.09	3.92	•20
2	05	1085.57	994.42	830.01	625.59	418.49	241.06	113.28	20.02	7.83	·29 ·42
.1	•00	1093.75	1045.39	910.20	715.49	499.09	299.70	146.80	52.84	11.02	·62
on	+ .05	1085-57	1082.81	984 .11	807.66	588·33	369.02	188.84	71.03	15.49	·91
ţi.	+ .10	1061-26	1104.96	1048.94	899.79	685·53	450.06	241.23	95.11	21.75	1.35
elɛ	$+ \cdot 15$	1021.57	1110.49	1101.85	989.04	789.44	543.65	306.06	126.91	30.57	1.99
H	+ .20 + .25	907.08	1098.49	1160.70	1144.96	898.05	000-25	385.66	108.83	43.03	2.98
<u>)</u>	+ .30	824.22	1000 00	1161.60	1203.51	1116.77	900-98	599.22	296.23	85.91	6.82
e	+ •35	739-03	956.66	1140.83	$1243 \cdot 14$	1217.79	1041.59	737.88	390-62	122.04	10.51
lat	$+ \cdot 40$	648.27	877.13	1097.21	$1259 \cdot 23$	1305.16	1187.27	899-90	$513 \cdot 21$	174.12	16.44
ari	$+ \cdot 45$	554.77	784.74	1030.51	1247.45	1371.20	1331.27	1084.96	671.18	249.62	26.17
\succ	$+ \cdot 50$ + $\cdot 55$	461.43	682·54	941·67 922.09	1204.17	1407.27	1463.74	1289.77	872.31	359.56	42.50
r	+ .60	286.72	464.10	708.50	1015.97	1353.14	1636.20	1718-18	1123.70	754.96	120.77
	+ .65	210.66	356.82	573.73	873.46	1247.48	1638-20	1899.37	1783.34	1095.94	213.01
	+ •70	145.09	257.23	436.02	706.04	1084.83	$1555 \cdot 63$	2009-23	2160.46	1582.39	389.45
	+ .75	91.59	170-01	304.07	524.71	870.38	$1371 \cdot 13$	1993-01	$2497 \cdot 22$	$2247 \cdot 23$	740.79
	+ .80	51.03	99·20	187.37	345.25	620·62	$1081 \cdot 22$	1789.53	2668·18	3067.85	1466.04
	+ .90	23.37	47.09	90.03	187.37	300.47	711.33	1358.89	2473.52	3820.37	2979.24
	+ .95	1.01	2.27	5.07	11.51 11.53	102'04 27.06	66.90	179.06	538.90	1916.67	7841.74
	+ 1.00	-00	-00	·00	·00	-00·	·00	·00	·00	·00	•00
	Mean	•0000	·0946	·1896	·2850	·3813	·4787	·5776	·6785	·7819	·8887
	Mode	·0000	·1411	$\cdot 2774$	·4050	·5219	·6270	.7206	·8036	·8771	.9422
	σ	·3333	·3308	$\cdot 3232$	·3103	·2917	·2671	$\cdot 2355$	·1958	·1461	·0832
	$(1 - \rho^2)/\sqrt{n-1}$	·3333	·3300	·3200	·3033	·2800	$\cdot 2500$	·2133	·1700	-1200	·0633
	β_1	•0000	0242	·0989	·2317	·4374	•7431	1.2002	1.9122	3.1377	5.7475
	β_2	2.4545	2·4933	2.6137	2.8292	3.1669	3.6774	4.4598	5.7290	8.0534	13.6667

۰,

TABLE A—(continued).

n = 11.

TABLE A. Ordinates and Constants of Frequency Curves.

n = 12.

		0	•1	•2	.3	•4	•5	•6	.7	.8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\40\\35\\30\\25\\20\\15\\10\\05\\00\\ +.05\\ +.10\\ +.25\\ +.30\\ +.35\\ +.40\\ +.45\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.85\\ +.90\\ +.95\\ +.100\end{array}$	0 -00 -111 1.60 7.30 20.67 45.08 83.24 136.86 206.44 291.24 389.33 497.73 612.62 729.56 843.79 950.51 1045.09 950.51 123.41 1181.98 1218.21 123.41 1181.98 1218.21 123.41 1045.09 950.51 843.79 729.56 612.62 497.73 389.33 291.24 206.44 136.86 83.24 45.08 20.67 7.30 1.60 -11 -00 -11 -00	$\begin{array}{c} \cdot 1 \\ \hline \\ \cdot 00 \\ \cdot 04 \\ \cdot 61 \\ 2 \cdot 93 \\ 8 \cdot 71 \\ 19 \cdot 94 \\ 38 \cdot 68 \\ 66 \cdot 80 \\ 105 \cdot 87 \\ 156 \cdot 97 \\ 220 \cdot 58 \\ 296 \cdot 51 \\ 383 \cdot 82 \\ 480 \cdot 84 \\ 585 \cdot 17 \\ 693 \cdot 78 \\ 803 \cdot 05 \\ 908 \cdot 99 \\ 1007 \cdot 35 \\ 1093 \cdot 82 \\ 1164 \cdot 30 \\ 1215 \cdot 06 \\ 1243 \cdot 05 \\ 1246 \cdot 03 \\ 1222 \cdot 86 \\ 1173 \cdot 63 \\ 1099 \cdot 72 \\ 1003 \cdot 91 \\ 890 \cdot 31 \\ 1222 \cdot 86 \\ 1173 \cdot 63 \\ 1099 \cdot 72 \\ 1003 \cdot 91 \\ 890 \cdot 31 \\ 764 \cdot 16 \\ 631 \cdot 64 \\ 499 \cdot 45 \\ 374 \cdot 33 \\ 262 \cdot 47 \\ 168 \cdot 90 \\ 96 \cdot 80 \\ 46 \cdot 98 \\ 17 \cdot 56 \\ 4 \cdot 09 \\ \cdot 30 \\ 00 \end{array}$	$\begin{array}{c} \cdot 2 \\ \hline \\ \cdot 00 \\ \cdot 01 \\ \cdot 22 \\ 1 \cdot 12 \\ 3 \cdot 47 \\ 8 \cdot 29 \\ 16 \cdot 77 \\ 30 \cdot 25 \\ 50 \cdot 10 \\ 77 \cdot 68 \\ 114 \cdot 20 \\ 160 \cdot 71 \\ 217 \cdot 93 \\ 286 \cdot 20 \\ 365 \cdot 35 \\ 454 \cdot 68 \\ 552 \cdot 83 \\ 657 \cdot 79 \\ 766 \cdot 83 \\ 876 \cdot 57 \\ 983 \cdot 02 \\ 1081 \cdot 67 \\ 167 \cdot 70 \\ 1236 \cdot 18 \\ 1282 \cdot 35 \\ 1301 \cdot 99 \\ 1291 \cdot 80 \\ 1249 \cdot 80 \\ 1245 \cdot 12 \\ 108 \cdot 17 \\ 472 \cdot 60 \\ 324 \cdot 59 \\ 198 \cdot 77 \\ 103 \cdot 20 \\ 41 \cdot 32 \\ 10 \cdot 31 \\ \cdot 81 \\ \cdot 00 \\ \end{array}$	$\begin{array}{c} \cdot 3 \\ \hline \cdot 00 \\ \cdot 08 \\ \cdot 40 \\ 1 \cdot 28 \\ 3 \cdot 18 \\ 6 \cdot 68 \\ 12 \cdot 52 \\ 21 \cdot 57 \\ 34 \cdot 81 \\ 53 \cdot 33 \\ 78 \cdot 27 \\ 110 \cdot 79 \\ 152 \cdot 04 \\ 203 \cdot 01 \\ 264 \cdot 55 \\ 337 \cdot 18 \\ 421 \cdot 03 \\ 515 \cdot 70 \\ 620 \cdot 13 \\ 732 \cdot 48 \\ 850 \cdot 05 \\ 337 \cdot 18 \\ 421 \cdot 03 \\ 515 \cdot 70 \\ 620 \cdot 13 \\ 732 \cdot 48 \\ 850 \cdot 05 \\ 1353 \cdot 61 \\ 1393 \cdot 76 \\ 1397 \cdot 87 \\ 1353 \cdot 61 \\ 1393 \cdot 76 \\ 1397 \cdot 87 \\ 1350 \cdot 66 \\ 1397 \cdot 87 \\ 1353 \cdot 61 \\ 1397 \cdot 87 \\ 1353 \cdot 61 \\ 1397 \cdot 87 \\ 1353 \cdot 61 \\ 1397 \cdot 87 \\ 1350 \cdot 66 \\ 1397 \cdot 87 \\ 1350 \cdot 66 \\ 1397 \cdot 87 \\ 1360 \cdot 66 \\ 1279 \cdot 15 \\ 1153 \cdot 78 \\ 989 \cdot 48 \\ 796 \cdot 46 \\ 590 \cdot 32 \\ 391 \cdot 03 \\ 220 \cdot 15 \\ 95 \cdot 84 \\ 26 \cdot 08 \\ 2 \cdot 25 \\ \cdot 00 \end{array}$	$\begin{array}{r} \cdot 4 \\ \hline & \cdot 00 \\ \cdot 00 \\ \cdot 02 \\ \cdot 13 \\ \cdot 43 \\ 1 \cdot 10 \\ 2 \cdot 38 \\ 4 \cdot 62 \\ 8 \cdot 24 \\ 1 \cdot 380 \\ 2 \cdot 195 \\ 3 \cdot 3 \cdot 48 \\ 4 \cdot 9 \cdot 33 \\ 7 \cdot 53 \\ 9 \cdot 8 \cdot 26 \\ 1 \cdot 33 \cdot 77 \\ 1 \cdot 78 \cdot 37 \\ 2 \cdot 33 \cdot 48 \\ 4 \cdot 9 \cdot 33 \\ 9 \cdot 8 \cdot 26 \\ 1 \cdot 33 \cdot 77 \\ 1 \cdot 78 \cdot 37 \\ 2 \cdot 33 \cdot 8 \\ 2 \cdot 9 \cdot 98 \\ 3 \cdot 79 \cdot 19 \\ 4 \cdot 77 \cdot 41 \\ 6 \cdot 98 \\ 3 \cdot 37 \\ 1 \cdot 64 \\ 5 \cdot 77 \cdot 41 \\ 6 \cdot 96 \\ 2 \cdot 35 \\ 1 \cdot 10^{-7} \cdot 71 \\ 1 \cdot 23 \cdot 72 \\ 1 \cdot 36 \cdot 10^{-7} \cdot 71 \\ 1 \cdot 23 \cdot 72 \\ 1 \cdot 36 \cdot 10^{-7} \cdot 71 \\ 1 \cdot 23 \cdot 72 \\ 1 \cdot 36 \cdot 10^{-7} \cdot 71 \\ 1 \cdot 23 \cdot 72 \\ 1 \cdot 36 \cdot 10^{-7} \cdot 71 \\ 1 \cdot 23 \cdot 72 \\ 1 \cdot 36 \cdot 10^{-7} \cdot 71 \\ 1 \cdot 23 \cdot 72 \\ 1 \cdot 37 \cdot 61 \\ 1 \cdot 50 \\ 1 \cdot $	$\begin{array}{c} \cdot 5 \\ \hline 00 \\ \cdot 00 \\ \cdot 01 \\ \cdot 04 \\ \cdot 12 \\ \cdot 33 \\ \cdot 73 \\ 1 \cdot 46 \\ 2 \cdot 69 \\ 4 \cdot 65 \\ 7 \cdot 66 \\ 12 \cdot 11 \\ 18 \cdot 52 \\ 27 \cdot 52 \\ 39 \cdot 90 \\ 56 \cdot 63 \\ 78 \cdot 86 \\ 107 \cdot 94 \\ 145 \cdot 45 \\ 193 \cdot 12 \\ 252 \cdot 88 \\ 326 \cdot 69 \\ 416 \cdot 49 \\ 523 \cdot 93 \\ 650 \cdot 07 \\ 794 \cdot 98 \\ 957 \cdot 09 \\ 1132 \cdot 50 \\ 1314 \cdot 07 \\ 1490 \cdot 50 \\ 1314 \cdot 07 \\ 134 \cdot 07 \\ 1490 \cdot 50 \\ 1314 \cdot 07 \\ 1490 \cdot 50 \\ 150 \cdot 28 \\ 150 \cdot 28 \\ 150 \cdot 28 \\ 100 \cdot$	$\begin{array}{c} \cdot 6 \\ \hline \\ \cdot 00 \\ \cdot 01 \\ \cdot 03 \\ \cdot 08 \\ \cdot 08 \\ \cdot 18 \\ \cdot 37 \\ \cdot 70 \\ 1 \cdot 25 \\ 2 \cdot 12 \\ 3 \cdot 46 \\ 5 \cdot 48 \\ 8 \cdot 45 \\ 12 \cdot 72 \\ 18 \cdot 79 \\ 27 \cdot 27 \\ 3 \cdot 46 \\ 5 \cdot 48 \\ 8 \cdot 45 \\ 12 \cdot 72 \\ 18 \cdot 79 \\ 27 \cdot 27 \\ 3 \cdot 46 \\ 5 \cdot 48 \\ 8 \cdot 45 \\ 12 \cdot 72 \\ 18 \cdot 79 \\ 27 \cdot 27 \\ 3 \cdot 48 \\ 5 $	$\begin{array}{c} .7\\ -00\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c c} \cdot 8 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} \cdot 9 \\ \hline 000 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
	$\begin{array}{c} \operatorname{Mean} \\ \operatorname{Mode} \\ \sigma \\ (1-\rho^2)/\sqrt{n-1} \\ \beta_1 \\ \beta_2 \end{array}$	·0000 ·0000 ·3015 ·3015 ·0000 2·5385	0956 1309 2991 2985 0215 20215 2000	·1914 ·2586 ·2919 ·2895 ·0880 2·6848	·2877 ·3805 ·2797 ·2744 ·2054 2·8816	·3847 ·4948 ·2622 ·2533 ·3854 3·1870	-4826 -6004 -2390 -2261 -6487 3-6417	·5818 ·6968 ·2096 ·1930 1·0329 4·3231	·6826 ·7843 ·1729 ·1538 1·6118 5·3905	·7855 ·8636 ·1276 ·1085 2·5509 7·2330	·8910 ·9353 ·0714 ·0573 4·3322 11·1595

TABLE A-(continued).

n = 13.

 ρ variate (correlation in population sampled).

[0	·1	•2	•3	·4	·5	·6	-7	•8	.9
-	- 1.00				·00	·00	·00	·00	·00	·00	•00
	95	.04	•01	•00	•00	•00			-		
	90	.73	·26	-09	.03	·01	•00	-	-		
	85	4.04	1.49	.52	·17	·05	·01	•00		-	
	80	13.03	5.06	1.85	·62	·19	.05	·01	-		
	75	31.34	12.84	4.91	1.72	·54	·14	·03	·00		
	70	62.49	27.00	10.82	3.95	1.28	.35	·08	·01		
	65	109-33	49.86	20.96	7.99	2.69	•76	·17	.03		
	60	173.60	83.57	36.87	14.67	5.13	1.51	.35	.05	•00	
	- ·55	255.68	129.97	60-20	25.03	9.10	2.78	·66	•11	•01	
	50	354.43	190-29	92.61	40.28	15.26	4.83	1.19	•20	.02	
	- •45	467.24	265.03	135-62	61.76	$24 \cdot 42$	8∙04	2.05	.35	.03	
	- ·40	590-21	353.79	190-50	90.93	37.56	12.88	3.41	.61	.05	
1	35	718-39	455·19	258.08	$129 \cdot 26$	55.84	19.97	5.50	1.01	.09	
	30	846.13	566-86	338.66	178.18	80.64	30.14	8.65	1.66	·15	
·	25	967.43	$685 \cdot 47$	431.85	238 .96	113.45	44 ·38	13.30	2.66	•26	•00
-	- ·20	1076-39	806.84	536.45	312.55	155.92	63·95	20.07	4.19	•42	•01
	- ·15	1167.55	926 ·10	650.33	399 • 4 6	209.73	90.38	29.75	6.51	.69	•01
	- ·10	1236-25	1037.95	770.44	499 •56	276.51	$125 \cdot 48$	43.44	9.98	1.11	·02
	- ·05	1278.96	1136-93	892.78	611.89	357.72	171.31	62.54	15.15	1.77	•04
	•00	1293.45	1217.76	1012.46	734.51	454·39	230.21	88.89	22.76	2.82	•00
	+ .05	1278-96	$1275 \cdot 64$	1123.90	864·29	566·93	304.67	124.80	33.91	4.40	•10
	+ .10	1236-25	1306.66	1221.04	996.83	694·79	397.09	173.18	50.15	7.03	•17
	$+ \cdot 15$	1167.55	$1308 \cdot 10$	1297.68	1126.41	836.11	509.76	237.58	73.66	11.07	•29
	+ •20	1076-39	1278.72	1347.93	1246.04	987 ·33	644.20	$322 \cdot 16$	107.48	17.43	•50
	$+ \cdot 25$	967·43	1218.98	1366-66	1347.70	1142.82	800.73	431.61	155.83	27.47	.80
	+ .30	846·13	1131-13	1350.13	1422.76	1294.58	977.68	570-83	224:46	43.35	1.49
	+ •35	718-39	1019-23	1296.48	1462.65	1432.08	1170-41	744.26	321.04	86.99	2.03
	+ · 4 0	590.21	888.97	$1206 \cdot 29$	1459.72	1542.51	1370-21	954.71	455.44	108.77	4.12
	+ · 4 5	467.24	747.35	1082.96	1408.44	1611-41	1563.16	1201.40	639.76	172.98	16.00
	+ •50	354.43	602·21	932 .90	1306-67	$1624 \cdot 11$	1729.32	1477.09	887.39	2/5.75	21.04
	+ •55	255.68	461.64	765.35	1157.00	1567.94	1842.84	1763.97	1210-31	440.01	20.00
.	+ .60	173.60	333.18	591.84	967.83	1435.55	1873.82	2029.03	1612.76	1100.60	197.90
	+ •65	109.33	$223 \cdot 11$	425.11	753.80	1228.80	1793.32	2220.10	2018.03	1794.94	972.57
	+ •70	62.49	135.64	277.57	534.99	962.72	1582.52	2267.17	2549.90	1724.34	£10.01
	$+ \cdot 75$	31.34	72.39	159.28	334.58	667.77	1246.49	2095.10	2898.10	2009.24	1408.68
	+ .80	13.03	32:04	75.91	174.24	387.67	829.19	1001.34	2907.04	4248.20	2976.40
	+ •85	4.04	10.58	27.01	67.94	169.42	419.43	1020-20	2338.80	4040.00	6960.94
	+ ·90	•73	2.05	5.65	15.61	43.90	127.20	383.80	1203.00	1074.97	7649.57
	$+ \cdot 95$	•04	•11	.32	•98	3.14	10-79	41.42	187.40	1014.87	.00
	+ 1.00	•00	•00	•00	•00	•00	•00	•00	-00	-00	
ľ	Mean		.0060	.1021	.2887	-3859	•4841	.5834	·6841	·7868	·8919
	Mean	.0000	.1974	.2522	.3721	-4853	-5908	.6880	.7772	·8585	·9326
	wode	.0000	.0069	.9702	.9674	-2504	.2270	·1994	·1640	·1206	.0671
	σ	-2001	-2003	.0771	.060"	.9495	.2165	.1849	.1472	.1039	.0548
	$(1 - \rho^2) / \sqrt{n} - 1$	-2887	•2858	•2771	2027	·2420 .2621	-2100	.0636	1.4009	2.3236	3.8337
	β_1	0000	0204	0.7117	9.0000	2,1004	3,6901	4.9575	5.9404	6.8937	10.2454
	β_2	2.5714	2.6057	2.111	Z.9999	9.1904	5.0201	+-2010	0.7404	0.0001	10 4101

r variate (correlation in sample).
TABLE A. Ordinates and Constants of Frequency Curves.

n = 14.

 ρ variate (correlation in population sampled).

		0	·1	•2	.3	•4	•5	•6	.7	.8	.9
	- 1.00	·00	•00	·00	.00	·00	•00	•00	·00	•00	·00
	95	·01	•00	•00	•00						
	90	•34	·11	·03	.01	•00	·			_	
	85	2.23	.75	·24	•07	02	•00	-			-
	80	8.18	2.93	.98	•30	·08	·02	•00		-	-
	/0	21.69	8.22	2.90	·93	·26	•06	•01			
	70	46.70	18.77	6.95	2.33	·69	•17	•03	.00	-	_
	- •00	86.94	37.04	14.45	5.07	1.55	•40	·08	•01		-
	00	140.33	00.08	27.00	9.93	3.17	·84	•17	.02		
	50	223.45	107.13	46.44	17.91	5.98	1.65	·35	.05	•00	
	45	321.20	103.42	74.76	30.28	10.57	3.04	•66	•09	•01	
	10	430.03	230.83	113.94	48.51	17.73	5.31	1.21	•18	•01	-
	35	704.20	324.04	105.76	74.28	28.46	8.92	2.11	•32	·02	-
	- ·30	944.64	428.91	231.07	109.39	44.02	14.43	3.57	·57	•04	
	25	090.91	674.91	312.00	155.68	05.88	22.66	5.86	·98	•07	
4	20	1102.69	906.07	408.32	214.80	95.78	34.62	9.38	1.64	•13	
Ľ.	15	1907.04	030.97	018·19 640.05	288.41	135.07	51.63	14.70	2.69	•23	•00
	10	1287.18	1064.65	770.57	311.28	187.02	75.34	22.59	4.35	•38	•01
	05	1336-68	1176.41	005.17	601.04	203.13	107-76	34.14	6.94	•64	•01
	-00	1353.52	1267.92	1038-07	722.00	425.70	151.28	50.77	10.92	1.07	•02
	+ .05	1336.68	1333-18	1162.50	155.22	400.19	208.02	74.41	17.01	1.77	•03
	$+ \cdot 10$	1287.18	1367.32	1271.05	1090.69	600.69	282.80	107.57	26.23	2.91	•05
	$+ \cdot 15$	1207.94	1367.06	1356-11	1164.04	843.39	370.89	153.45	40.10	4.77	•09
	+ .20	1103.62	1331.09	1410-48	1906.49	1008.40	495.74	216.07	60.80	7.81	•15
	$+ \cdot 25$	980.21	1260.37	1428.09	1408.13	1179.07	809.00	300.25	91.00	12.70	•27
-	+ .30	844.64	1158.20	1404.74	1488.72	1345.78	004.92	411.93	130.00	20.87	•49
	$+ \cdot 35$	704.20	1030-12	1338.84	1528.05	1495-87	1904.16	728.66	202.01	56.01	·89 1.64
	+ •40	566.06	883.63	1232.03	1517.46	1613.92	1499.35	062.62	422.15	09.09	2.09
	$+ \cdot 45$	436.63	727.61	1089.56	1451-35	1682.84	1632.02	1230.08	693.19	151.50	5.09
	+ •50	321.20	571.57	920.31	1328.79	1685-90	1809-23	1590.49	883.97	249.81	11.64
	+ •55	223.45	424.77	736-29	1155.02	1609.82	1923-36	1840.21	1227.85	411.85	23.56
	+ •60	145.33	295.23	551.59	942.42	1448.96	1940.22	2122.58	1661.76	676.71	49.22
	+ .65	86 ·94	188.79	380.68	710.22	1209.98	$1829 \cdot 15$	2314.64	2165.10	1101.47	106.69
	+ .70	46.70	108.45	236.30	482.68	915 .58	$1575 \cdot 19$	2336.05	2667.21	1756-31	240.71
	+ .75	21.69	53.89	127.07	284 ·99	605.00	1195.09	2108.50	3014.47	2686.77	565.87
1	+ .80	8.18	21.76	55.58	137.29	327.97	751.18	1604.06	2961.44	3784.47	1375.97
	+ .80	2.23	6.34	17.57	47.94	129.65	348.10	917-81	2272.14	4491.55	3347.70
	+ .90	•34	1.02	3.08	9.30	28.67	91.32	304.31	1058.56	3588.66	7183.43
	+ .95	.01	.04	·13	·43	1.52	5.81	25.17	130.49	877.42	7501.01
	+ 1.00	•00	•00	•00	•00	•00	•00	•00	•00	•00	•00
	Mean	•0000	·0963	·1927	·2896	.3870	.4852	.5847	.6954	.7870	.9026
	Mode	•0000	$\cdot 1246$	·2470	.3652	.4775	-5828	-6808	.7711	-1019	.0303
	σ	·2774	$\cdot 2751$	·2682	·2566	·2401	-2182	-1006	1564	.1145	-0634
10	$1 - \rho^2 / \sqrt{n-1}$	·2774	·2746	·2663	.2524	.2330	.2080	1775	.1414	.0000	0597
ľ	β,	-0000	·0194	0790	-1838	-3430	.5720	-1110	1.2020	9,1909	2,4900
	β_2	2.6000	2.6329	2.7346	2.9145	3.1912	3.5979	4.1955	2.1038	6.5061	0.4886
L							0 0010	I 1000	0 1000	0 0001	0.4000

.

r variate (correlation in sample).

TABLE A-(continued).

n = 15.

		0	·1	·2	•3	•4	•5	•6	•7	•8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\50\\55\\50\\45\\40\\35\\30\\25\\20\\15\\20\\15\\10\\05\\ +.10\\ +.05\\ +.30\\ +.35\\ +.30\\ +.35\\ +.30\\ +.35\\ +.40\\ +.45\\ +.55\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.95\\ +.90\\ +.95\\ +.100\\ \hline\end{array}$	0 .00 .00 .15 1.22 5.12 14.96 34.77 68.88 121.21 194.55 289.98 406.50 540.85 687.70 839.97 989.42 1127.28 1245.03 1335.15 1391.74 1335.15 1245.03 1127.28 989.42 1335.15 1245.03 1127.28 989.42 839.97 687.70 540.85 406.50 289.98 194.55 121.21 68.88 34.77 14.96 5.12 1.22 .15 .00 .0000 .0000	·1 ·00 ·00 ·04 ·38 1·69 5·25 12·99 27·42 51·42 87·97 139·82 209·05 296·76 402·73 525·16 660·62 804·07 949·02 1087·93 1212·67 1315·18 1388·08 1425·42 1423·30 1380·40 1298·27 1131·18 1388·08 1425·42 1423·30 1380·40 1298·27 1181·45 1037·21 875·02 705·73 540·45 389·38 260·61 159·16 86·37 39·97 14·72 3.79 ·51 ·01 ·00 ·0965 ·1224	$\begin{array}{r} \cdot 2 \\ \hline 00 \\ \cdot 00 \\ 00 \\ 01 \\ \cdot 11 \\ \cdot 52 \\ 1 \cdot 70 \\ 4 \cdot 45 \\ 9 \cdot 93 \\ 19 \cdot 70 \\ 35 \cdot 70 \\ 60 \cdot 13 \\ 95 \cdot 35 \\ 143 \cdot 69 \\ 20 \cdot 71 \\ 7 \\ 287 \cdot 27 \\ 384 \cdot 61 \\ 498 \cdot 68 \\ 627 \cdot 56 \\ 767 \cdot 80 \\ 914 \cdot 28 \\ 1060 \cdot 32 \\ 1197 \cdot 90 \\ 1318 \cdot 13 \\ 1470 \cdot 37 \\ 1486 \cdot 66 \\ 1456 \cdot 06 \\ 1377 \cdot 39 \\ 1253 \cdot 60 \\ 1092 \cdot 09 \\ 904 \cdot 49 \\ 705 \cdot 68 \\ 512 \cdot 15 \\ 339 \cdot 61 \\ 200 \cdot 40 \\ 100 \cdot 99 \\ 904 \cdot 49 \\ 705 \cdot 68 \\ 512 \cdot 15 \\ 339 \cdot 61 \\ 200 \cdot 40 \\ 100 \cdot 99 \\ 904 \cdot 49 \\ 705 \cdot 68 \\ 512 \cdot 15 \\ 339 \cdot 61 \\ 200 \cdot 40 \\ 100 \cdot 99 \\ 105 \cdot 55 \\ 11 \cdot 39 \\ 1 \cdot 67 \\ \cdot 05 \\ \cdot 00 \\ \hline \end{array}$	-3 -00 -00 -03 -14 -50 1.37 3.21 6.69 12.77 22.68 37.96 60.46 92.23 135.50 192.47 265.12 354.99 462.81 588.16 729.17 882.11 1041.17 1198.41 1343.80 1465.74 1551.88 1590.37 1571.56 1489.95 1346.21 1148.73 914.23 666.66 433.86 241.85 107.77 3.71 5.52 -19 -00 -2903 -3595	·4 ·00 -00 ·01 ·04 ·13 ·37 ·90 1.96 3.91 7.29 12.82 21.49 34.56 53.62 80.56 117.61 167.21 231.94 314.29 416.38 539.56 683.89 847.52 1026.06 1211.89 1393.76 1556.64 1682.30 1750.86 1743.50 1646.64 1457.04 1187.01 867.51 546.09 276.43 98.85 18.65 ·73 ·00 ·3879 ·4710	-5 -00 -00 -01 -03 -03 -08 -21 -47 -97 1.90 3.50 6.15 10.39 16.97 26.90 41.52 62.56 92.19 133.08 188.35 261.56 356.36 476.43 820.5 1007.27 1234.25 1470.94 1697.55 1885.77 1999.91 2001.47 1858.75 1562.05 1141.54 67.798 287.83 65.32 3.12 -00	$\begin{array}{c} \cdot 6 \\ \hline 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	·7 ·00 	-8 -00 	·9 ·00
	$\sigma = \frac{\sigma}{(1 - \rho^2)/\sqrt{n - 1}}$ $\beta_1 \\\beta_2$	·2673 ·2673 ·0000 2·6250	·2650 ·2646 ·0184 2·6566	·2583 ·2566 ·0751 2·7542	$\begin{array}{r} \cdot 2470 \\ \cdot 2423 \\ \cdot 1745 \\ 2 \cdot 9265 \end{array}$	·2309 ·2245 ·3248 3·1904	·2096 ·2004 ·5407 3·5759	·1828 ·1710 ·8473 4·1375	·1496 ·1363 1·2904 4·9799	·1093 ·0962 1·9635 6·3347	·0602 ·0508 3·0956 8·8548

TABLE A. Ordinates and Constants of Frequency Curves.

n = 16.

 ρ variate (correlation in population sampled).

		0	•1	•2	•3	•4	•5	•6	-7	.8	.9
	- 1.00 95	·00 ·00	·00	<u>.00</u>	·00	.00	•00	•00	•00	·00	•00
	90	.07	.02	.00	-00						
	85	.67	·19	.05	.01	-00				-	
	80	3.19	.97	.27	.07	.02	.00				-
	- •75	10.28	3.34	1.00	.27	+06	.01				-
	70	25.80	8.97	2.84	-80	.19	.04	.01		_	-
	65	54.39	20.23	6.80	2.02	.51	.11	.02			
	60	100.76	40.12	14.33	4.50	1.20	.26	.01			
	- •55	168.85	72.01	27.35	9.08	2.55	.57	.00	.00		
	- •50	260.97	119.24	48.20	16.93	5.01	1.18	.20	.02		_
	- •45	377.23	184.72	79.55	29.61	9.24	2.29	.41	.05		
	- •40	515.11	270.42	124.16	49.05	16.17	4.23	-80	.00		_
	- •35	669.43	376.88	184.68	77.51	27.05	7.46	1.48	.18	.01	
<u>.</u>	- •30	832.67	502.91	263.24	117.56	43.50	12.67	2.65	.34	.02	
le)	25	995·53	645.25	361.12	171.85	67.54	20.84	4.61	-61	.03	
Jp.	20	1147.76	798.62	478.36	242.94	101.63	33.28	7.80	1.10	-06	
an	- ·15	1279-16	955.82	613.35	332.95	148.55	51.78	12.89	1.93	.12	
ŝ	10	1380.50	1108.16	762.59	443.20	211.35	78.63	20.86	3.32	.21	
q	05	1444.45	1246.06	920.53	573.72	293.10	116.70	33.10	5.62	-38	
· 🗆	·00	1466-31	1359.84	1079.59	722.83	396.57	169.51	51.59	9.40	-69	.00
8	+ .05	1444.45	1440.62	1230.45	886.63	523.71	241.10	79.06	15.52	1.23	.01
. <u>च</u>	$+ \cdot 10$	1380.50	1481.25	1362.60	1058.69	675.07	335.89	119.19	25.36	2.18	.02
Bla	+ .15	$1279 \cdot 16$	1477.14	1465.15	$1229 \cdot 86$	848.97	458.26	176-81	40.99	3.84	.04
Ĕ	$+ \cdot 20$	1147.76	1426.97	1527.93	1388.46	1040.70	611.89	258.02	65.60	6.77	-08
8	+ .25	995 •53	1333.04	1542.70	1520.86	1241.67	798.66	370.16	103.97	11.92	.16
J	$+ \cdot 30$	832.67	1201.32	1504.45	1612.58	1438.86	$1017 \cdot 24$	521.43	163.10	20.98	-31
e l	+ .35	669.43	1041.01	1412.54	1649.98	1614.73	1261.08	719.87	253.03	36.96	.63
18	+ •40	$515 \cdot 11$	863.74	1271.49	$1622 \cdot 42$	1748.02	1516.38	971.31	387.62	65.16	1.30
ar La	+ •40	377.23	682.33	1091.14	1524.73	1815-85	1760.11	$1275 \cdot 84$	584.87	114.98	2.74
Þ	+ •30	260.97	509.39	886.11	1359.54	1797.36	1959.32	1622.38	865.86	$202 \cdot 85$	5.94
2	+ • • • • • • • • • • • • • • • • • • •	168.85	355.79	674·19	$1138 \cdot 85$	1678.96	$2072 \cdot 94$	1981.54	1250.36	357.03	13.25
	+ .00	100.76	229.32	474.01	884·08	1460.52	2058.14	2298.30	1745.69	$624 \cdot 23$	30.62
1	+ .00	54.39	133.74	302.02	623.79	1160.78	$1882 \cdot 87$	2489.31	$2324 \cdot 29$	1075.93	73.57
	+ .70	25.80	68 ∙58	169.43	388.74	819·36	1544.13	2454.04	2887.46	1802.95	184.41
	+ 10	10.28	29.55	80.00	204.59	491.36	1086-96	2112.96	3227.08	2862.73	481.97
	+ 00	3.19	9.92	29.49	84.33	232.25	609.99	1479.67	3040.08	4096-07	1299.15
1	+ .00	.67	2.25	7.36	23.62	75.13	237.24	734.93	2121.99	$4742 \cdot 40$	3458.65
	+ .90	.07	•25	•90	3.27	12.09	46.58	189-31	810.97	3388.31	7772.88
	+ 1.00	.00	•00	.02	·08	·35	1.67	9.19	62.58	578.60	7150-91
	+ 1.00	•00	•00	•00	. •00	•00	•00	•00	•00	•00	•00
	Mean	·0000	.0968	.1937	.2000	.2000	.1979			7000	
	Mode	•0000	·1206	·2394	.3548	-1655	-5705	6000	·08/0	.0471	·8937
	σ	$\cdot 2582$	·2560	-2495	.2321	.9997	.9090	.1750	.1497	.1047	.9265
0	$(1 - \rho^2)/\sqrt{n - 1}$.2582	.2556	.9470	-400±	9160	1020	.1/59	•1437	•1047	.0575
ſ	β, 1	-0000	-0176	.0716	1660	2109	.1936	·1652	.1310	.0930	·0491
	B.	2.6471	2.6775	2.7719	9.0262	·3083	·0117	•7983	1.2080	1.8195	2.8181
	1-2	- 0111	- 0110	2.1112	2.9909	9.1993	3.9949	4.0836	4·8677	6.1046	8.3239

.

TABLE A—(continued).

n	=	1	7				4
---	---	---	---	--	--	--	---

 ρ variate (correlation in population sampled).

		0	·1	·2	•3	•4	•5	·6	.7	•8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\45\\40\\35\\30\\25\\20\\15\\30\\25\\20\\15\\10\\05\\ +.10\\ +.05\\ +.10\\ +.05\\ +.35\\ +.30\\ +.35\\ +.30\\ +.35\\ +.40\\ +.35\\ +.55\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.95\\ +.90\\ +.95\\ +.90\\ +.95\\ +.90\\ +.95\\ +.100\\ \hline \end{array}$	-00 -00 -03 -37 1.98 7.05 19.10 42.84 83.54 146.13 234.22 349.12 489.26 649.87 823.17 998.93 1165.43 1310.64 1423.48 1310.64 1423.48 1310.64 1423.48 1310.64 1519.58 1495.05 1423.48 1310.64 998.93 823.17 649.87 489.26 349.12 234.22 146.13 83.54 42.84 19.10 7.05 1.98 83.54 42.84 19.10 7.05 1.98 8.35 1.98 3.37 649.87 489.26 3.49.12 2.34.22 1.46.13 8.35 4.23.48 1.10.64 3.49.12 2.34.22 1.46.13 8.35 4.23.48 1.10.64 3.49.12 2.34.22 1.46.13 8.35 4.23.48 1.10.64 3.49.12 2.34.22 1.46.13 8.35.4 4.28.4 1.9.10 7.05 1.98 8.37 1.98 3.37 1.98 3.37 1.00 4.9.26 3.49.12 4.9.26 3.49.12 4.9.30 1.00 4.9.37 1.00 4.9.37 1.00 4.9.37 1.00 4.9.37 1.00 4.9.37 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.9.57 1.00 4.00 7.00 5.00 0.00 0.000 0.000 0.0000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.6667	$\begin{array}{c} \cdot 00\\ \cdot 00\\ \cdot 01\\ \cdot 10\\ \cdot 56\\ 2 \cdot 12\\ 6 \cdot 17\\ 14 \cdot 88\\ 31 \cdot 23\\ 58 \cdot 78\\ 101 \cdot 41\\ 162 \cdot 78\\ 245 \cdot 73\\ 351 \cdot 73\\ 480 \cdot 28\\ 628 \cdot 51\\ 791 \cdot 03\\ 960 \cdot 04\\ 1125 \cdot 69\\ 1276 \cdot 87\\ 1402 \cdot 18\\ 1491 \cdot 07\\ 1535 \cdot 05\\ 1528 \cdot 81\\ 1491 \cdot 07\\ 1535 \cdot 05\\ 1528 \cdot 81\\ 1491 \cdot 07\\ 1535 \cdot 05\\ 1528 \cdot 81\\ 1491 \cdot 07\\ 1535 \cdot 05\\ 1528 \cdot 81\\ 324 \cdot 22\\ 201 \cdot 23\\ 112 \cdot 08\\ 54 \cdot 30\\ 21 \cdot 79\\ 6 \cdot 67\\ 1 \cdot 34\\ \cdot 12\\ \cdot 00\\ \cdot 00\\ \hline \end{array}$	$\begin{array}{c} \cdot 00 \\ -00 \\ \cdot 02 \\ \cdot 14 \\ \cdot 58 \\ 1 \cdot 81 \\ 4 \cdot 64 \\ 10 \cdot 39 \\ 20 \cdot 89 \\ 38 \cdot 54 \\ 66 \cdot 18 \\ 106 \cdot 99 \\ 164 \cdot 17 \\ 240 \cdot 55 \\ 338 \cdot 14 \\ 457 \cdot 61 \\ 597 \cdot 82 \\ 755 \cdot 35 \\ 924 \cdot 29 \\ 1096 \cdot 21 \\ 1260 \cdot 42 \\$	·00 -0 ·01 ·03 ·14 ·47 1·27 3·02 6·43 12·61 23·04 39·68 64·96 101·72 153·03 222·01 311·43 423·25 558·10 714·59 888·75 1073·56 1258·69 1430·69 1573·74 1671·08 1707·15 1670·36 1369·26 1125·98 852·59 582·09 347·36 172·59 852·59 582·09 347·36 172·59 852·59 582·09 347·36 172·59 852·59 582·09 347·36 172·59 852·59 582·09 347·36 172·59 582·09 347·36 172·59 582·09 347·36 106·51 1·93 ·00 ·2915 ·3507 ·2307 ·2275 ·1582 2·9446	.00 -0 .01 .03 .10 .03 .10 .29 .74 1.66 3.43 6.64 12.14 2.14 12.14 2.14 2.14 2.14 2.14 2	$\begin{array}{c} -00\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} 00\\ -\\ 00\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $

Biometrika XI

26

TABLE A. Ordinates and Constants of Frequency Curves.

n = 18.

 ρ variate (correlation in population sampled).

	-	0	·1	•2	•3	•4	•5	·6	.7	•8	.9
	- 1.00	.00	·00	•00	·00	·00	•00	•00	•00	•00	•00
	- •95	•00									
	90	•01	•00	•00							
	85	·20	.05	.01	.00						
	80	1.23	.32	.08	.02	.00					
	75	4.82	1.34	.34	.08	·01	.00				
	70	14.10	4.24	1.15	.27	-05	.01				
	65	33.66	10.93	3.16	-80	.17	.03		•		
	60	69.10	24.24	7.52	2.02	.45	.08	.01			
	55	126.18	47.87	15.02	4.55	1.08	.00	.02			
	50	209.71	86.05	20.73	9.36	9.35	-20	-05			
	45	322.33	143.10	54.02	17.88	4.76	.40	-00			
	40	463.60	999.77	01.09	29.02	0.00	.98	.14	.01		
	- 35	620.30	222.11	91.98	54.99	9.09	1.98	•30	•03		
	30	811.95	157.50	140.00	04.02	10.44	3.80	10.	•06	-	
•	- ·95	000.07	407.08	219.30	19# 04	28.40	7.01	1.19	•11	-	-
	_ ·20	1100.50	010.10	315.87	130.94	47.10	12.40	2.24	•23	10·	
1	15	1220.70	781.00	436.73	202.39	75.28	21.22	4.09	•44	.02	
	- 10	1339.70	961.98	581.30	290.60	116.32	35.20	7.27	•84	.03	
	- 10	1404.32	1140.77	746.40	403.25	174.11	56.74	12.60	1.57	•07	
	05	1543.76	1305-33	925.87	541.62	252.92	89.04	21.34	2.86	•14	
	•00	1571.04	1442.41	1110.44	704.76	356-91	136-21	35.38	5.13	•27	
	+ •05	1543.76	$1539 \cdot 62$	1288.06	888.76	489.54	203.29	57.47	9.09	•51	•00
	$+ \cdot 10$	1464.32	1587.04	1444.69	1086.05	652.63	296.06	91.57	15.86	•98	•01
	$+ \cdot 15$	1339.70	1578.54	1565.59	$1285 \cdot 14$	845.22	420.66	143.10	27.33	1.87	•01
	$+ \cdot 20$	1180.56	1512.94	1637.00	1470.71	1062.25	582.69	219.31	46.52	3.55	$\cdot 02$
	$+ \cdot 25$	999-97	1394.42	1648.23	1624.60	$1293 \cdot 27$	785.76	329.31	78.24	6.73	.05
•	$+ \cdot 30$	811.85	1232.37	1593.57	1727.60	1521.54	1029.39	483.81	129.92	12.75	•11
	$+ \cdot 35$	629.39	1040.48	1473.96	1762.12	1723.97	1306.25	693·90	212.79	24.12	·24
	$+ \cdot 40$	463.60	835.02	1297.82	1715.64	1872.57	1598.97	968.37	343.11	45.64	·54
	$+ \cdot 45$	322.33	632.84	1080.74	$1584 \cdot 29$	1937.95	1877.54	1308.88	543.00	86.32	1.26
	$+ \cdot 50$	209.71	449.00	843.82	1375.79	$1895 \cdot 25$	2098.72	$1702 \cdot 25$	839.57	162.94	3.00
	+55	126-18	294.75	610.56	1110.63	1731.96	2209.80	2110.51	1259.46	306.15	7.37
	+ .60	69-10	176-17	402.90	820.29	1456.10	2159.46	2461.52	1813.97	569.59	18.84
	+ .65	33.66	93.71	236.98	541.90	1101.45	1917.07	2648.10	2468.15	1039.63	50.19
	+ •70	14.10	42.89	120.15	309.66	725.26	1497.24	2550.03	3092.09	1830-85	139.75
	+ .75	4.82	16.03	49.82	145.26	394.72	077.97	2094.49	3417.34	3017.33	406.10
	+ .80	1.23	4.48	15.47	51.23	162.68	490.06	1350.14	3087.13	4385-61	1213.45
	$+ \cdot 85$	·20	.79	3.05	11.51	43.06	150.04	582.14	1960-44	4953.44	3534.00
	+ .90	.01	.05	•26	1.14	5.05	93.50	116.40	614.60	3164.70	8320.60
1	+ .95	.00	.00	.00	-01	.08	23.50	3.29	20.60	377.45	6744.39
	+ 1.00	·00	·00	•00	·00	·00	•00	·00	·00	•00	•00
-	М.							•••···			
	Mean	·0000	·0971	·1944	·2920	·3901	·4888	·5884	·6890	·7909	$\cdot 8945$
	Mode	·0000	·1176	$\cdot 2338$	$\cdot 3472$	·4567	·5613	·6605	·7540	·8417	.9236
	σ	$\cdot 2425$	$\cdot 2405$	$\cdot 2342$	$\cdot 2237$	·2086	·1889	·1641	·1337	·0970	·0530
($(1 - \rho^2)/\sqrt{n - 1}$	$\cdot 2425$	·2401	$\cdot 2328$	$\cdot 2207$	$\cdot 2037$	·1819	$\cdot 1552$.1237	.0873	.0461
ľ	β_1	·0000	·0161	.0653	·1511	$\cdot 2797$.4617	.7147	1.0695	1.5839	2.3830
	β,	2.6842	2.7124	2.7992	2.9515	3.1823	3.5144	3.9873	4.6737	5.7207	7.4908
					3 0010	0 1020	0.0111	0.0010	* 0101	<i>p</i> 1201	1 7000

r variate (correlation in sample).

TABLE A—(continued).

n = 19.

.

		0	·1	·2	•3	·4	•5	·6	•7	•8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\45\\40\\35\\30\\25\\30\\25\\20\\15\\10\\05\\ +.00\\ +.05\\ +.20\\ +.25\\ +.30\\ +.25\\ +.30\\ +.40\\ +.45\\ +.55\\ +.60\\ +.55\\ +.60\end{array}$	0 .00 .00 .01 .11 .76 3.29 10.39 26.39 57.03 108.73 187.37 296.98 438.38 608.28 799.03 998.93 1193.40 1366.56 1503.20 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 1590.74 1620.88 193.40 998.93 799.03 608.28 438.38 296.98 187.37 108.73 57.03 108.74 108.74 108.75 108.75 108.75 108.75 108.75 108.75 108.75 108.75 108.75 1	$\cdot 1$ $\cdot 00$ $\cdot 02$ $\cdot 18$ $\cdot 85$ $2 \cdot 90$ $8 \cdot 00$ $18 \cdot 78$ $38 \cdot 90$ $72 \cdot 86$ $125 \cdot 54$ $201 \cdot 54$ $201 \cdot 54$ $201 \cdot 54$ $304 \cdot 27$ $435 \cdot 05$ $592 \cdot 25$ $770 \cdot 79$ $961 \cdot 93$ $1153 \cdot 66$ $1331 \cdot 66$ $1480 \cdot 70$ $1586 \cdot 45$ $1626 \cdot 51$ $1552 \cdot 77$ $1626 \cdot 12$ $1552 \cdot 77$ $1552 \cdot 77$	$\cdot 2$ $\cdot 00$ -00 $\cdot 04$ $\cdot 200$ $\cdot 73$ $2 \cdot 15$ $5 \cdot 43$ $12 \cdot 11$ $24 \cdot 46$ $45 \cdot 49$ $78 \cdot 91$ $128 \cdot 86$ $199 \cdot 51$ $294 \cdot 45$ $415 \cdot 93$ $564 \cdot 06$ $736 \cdot 02$ $925 \cdot 52$ $1122 \cdot 52$ $1313 \cdot 57$ $1482 \cdot 73$ $1613 \cdot 08$ $1638 \cdot 12$ $1634 \cdot 75$ $1500 \cdot 76$ $1306 \cdot 92$ $1072 \cdot 08$ $820 \cdot 76$ $579 \cdot 15$ $370 \cdot 23$	$\cdot 3$ $\cdot 00$ -00 $\cdot 01$ $\cdot 04$ $\cdot 16$ $\cdot 50$ $1 \cdot 35$ $3 \cdot 21$ $6 \cdot 94$ $13 \cdot 84$ $25 \cdot 79$ $45 \cdot 32$ $75 \cdot 63$ $120 \cdot 51$ $184 \cdot 13$ $270 \cdot 60$ $383 \cdot 39$ $524 \cdot 53$ $693 \cdot 62$ $886 \cdot 92$ $1096 \cdot 42$ $1309 \cdot 42$ $1508 \cdot 71$ $1673 \cdot 64$ $1782 \cdot 33$ $1815 \cdot 10$ $1758 \cdot 51$ $1609 \cdot 70$ $1379 \cdot 49$ $1093 \cdot 22$ $787 \cdot 57$	$\cdot 4$ $\cdot 00$ - - $\cdot 00$ $\cdot 01$ $\cdot 03$ $\cdot 10$ $\cdot 27$ $\cdot 70$ 1.60 3.41 6.79 12.77 22.88 39.21 64.59 102.59 10	-5 -00 	$\begin{array}{c} \cdot 6 \\ \hline 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\cdot 7$ $\cdot 00$ - - - - - - - - - -	$-\frac{\cdot 8}{-00}$ $-\frac{-}{-}$	·9 ·00
r va	$\begin{array}{r} + \cdot 50 \\ + \cdot 55 \\ + \cdot 60 \\ + \cdot 65 \\ + \cdot 70 \\ + \cdot 75 \\ + \cdot 80 \\ + \cdot 85 \\ + \cdot 90 \\ + \cdot 95 \\ + 1\cdot 00 \end{array}$	$\begin{array}{c} 187.37\\ 108.73\\ 57.03\\ 26.39\\ 10.39\\ 3.29\\ .76\\ .11\\ .01\\ .00\\ .00\\ .00\\ \end{array}$	420-16 267-40 153-91 78-18 33-81 11-76 3-00 -47 -02 -00 -00	820-76 579-15 370-23 209-24 100-85 39-19 11-17 1-96 -14 -00 -00	1379-49 1093-22 787-57 503-43 275-47 122-01 39-80 8-01 -67 -01 -00	1939-87 1753-38 1449-19 1069-45 680-14 352-63 135-72 32-49 3-25 -04 -00	2165-06 2274-19 2204-82 1928-16 1469-57 924-51 437-70 130-90 16-63 -25 -00	1738-01 2171-08 2539-21 2722-44 2591-04 2078-60 1285-55 516-43 91-09 1-99 -00	824.05 1259.96 1843-14 2535-20 3189-48 3505-34 3100-93 1878-29 533-33 20-38 -00	145-56 282-59 542-34 1018-65 1839-04 3037-80 4523-43 5046-26 3048-86 303-89 -00	$\begin{array}{c} 2.12 \\ 5.48 \\ 14.73 \\ 41.32 \\ 121.27 \\ 371.57 \\ 1169.00 \\ 3562.39 \\ 8581.50 \\ 6528.96 \\ .00 \end{array}$
	$\begin{array}{c} \operatorname{Mean} \\ \operatorname{Mode} \\ \sigma \\ (1-\rho^2)/\sqrt{n-1} \\ \beta_1 \\ \beta_2 \end{array}$	·0000 ·0000 ·2357 ·2357 ·0000 2·7000	·0973 ·1165 ·2337 ·2333 ·0154 2·7272	·1947 ·2316 ·2275 ·2263 ·0626 2·8109	·2924 ·3442 ·2172 ·2145 ·1446 2·9573	·3906 ·4531 ·2025 ·1980 ·2672 3·1787	·4894 ·5576 ·1832 ·1768 ·4400 3·4958	·5890 ·6569 ·1590 ·1508 ·6789 3·9447	·6896 ·7509 ·1294 ·1202 1·0110 4·5897	·7915 ·8394 ·0937 ·0849 1·4866 5·5597	·8948 ·9224 ·0511 ·0448 2·2105 7·1586

TABLE A. Ordinates and Constants of Frequency Curves.

n = 20.

		0	·1	•2	•3	•4	•5	•6	.7	.8	.9	
	-1.00	·00	·00	·00	·00	·00	·00	·00	•00	•00	•00	
	90				-	-		-			-	
	85	-00	.00	0				-	-			
	80	-47	.10	.00			_	-		-		
	75	2.94	.53	.11	.00					-		
	70	7.64	1.00	.46	-02	.00						l
	65	20.65	5.85	1.46	.21	.02	.00					l
	60	46.08	14.53	2.01	.00	.17	.01					ł
	55	93.51	31.56	0.20	2.26	.45	.07	.00				
	50	167.11	61.57	19.43	5.14	1.09	.17	.02				
	45	273.13	109.93	37.61	10.70	2.44	.49	.05				
	40	413.76	181.99	67.57	20.74	5.06	.02	.11	.00			
	35	586.81	282.18	113.83	37.75	9.91	1.03	.95	.02			
	30	784.96	412.86	181.17	65.03	18.39	3.84	.53	.04			l
(e)	25	996.07	573.27	273.98	106.64	32.57	7.32	1.08	.09			
d	20	1204.17	758.68	395-39	167.20	55.31	13.42	2.13	.18			
g	15	1391.40	960-11	- 546-33	251.51	90.32	23.73	4.07	.37	.01		
S 8	10	1540.28	1164.55	724.46	363.84	142.24	40.60	7.55	.73	.02		
d	05	1636.14	1356.03	923.47	507.05	216.43	67.37	13.64	1.44	.05		
• –	·00	1669-24	1517.23	1132.65	681.41	318.54	108.54	24.06	2.78	.10		
nc	+ .05	1636-14	1631.71	1337.14	883.46	453.78	169.98	41.43	5.27	.21		
Ę.	+ .10	1540.28	1686-21	1518.98	1104.85	625.68	258.79	69.76	9.84	.44		
la	+ .15	1391.40	1672.86	1658.98	1331.72	834.48	382.94	114.86	18.07	.00	.00	
Te	+ .20	1204.17	1590.74	1739-26	1544.87	1075.23	550.27	184.86	32.72	1.85	-01	
0	+ .25	996.07	1446.47	1746-32	1720.99	1335-82	766.63	290.54	58.39	3.77	.02	
్ర	+ .30	784.96	1253.70	1673.93	1835.44	1595.60	1033.05	445.18	102.63	7.68	.04	
e	+ .35	586.81	1031-28	$1525 \cdot 25$	$1866 \cdot 25$	$1825 \cdot 32$	1341.82	663.32	177.47	15.62	.09	
at	+ •40	413.76	800.54	1313.68	1799.15	1989-34	1672.08	957.45	301.19	31.71	.22	
Ľ.	+ •45	273.13	582.06	1061.54	$1632 \cdot 51$	2051.11	1986-22	1331.67	499.96	64.26	.57	
28	+ .50	167.11	392.47	796.88	1380.68	1981.92	2229.43	$1771 \cdot 29$	807.35	129.80	1.50	
r	+ .55	93.51	242.15	548.35	1074.11	1771.83	$2336 \cdot 21$	2229.32	1258.17	260.36	4.07	
	+ .60	46.98	134.22	339.60	754.79	1439.68	2247.04	2614.58	1869-39	515.46	11.50	
	+ .65	20.65	65.11	184.41	466.85	1036.50	1935.78	2793.79	2599.35	996·30	33.96	
	+ .70	7.64	26.60	84 .50	244.62	636·66	1439.79	2627.94	3283.99	1843.93	105.05	
	+ •75	2.24	8.62	30.77	102.29	314.46	872.48	$2059 \cdot 10$	3589.11	3154.22	339.37	
	+ .80	•47	2.00	8 ∙05	30.87	113.01	390.31	1221.83	3109.18	4657.18	1124.15	
	+ .85	•06	·28	1.25	5.56	24.47	106.93	457.32	1796.33	5131.57	3583.56	
	+ .90	•00	•00	· ·08	.39	2.09	11.76	71.10	461.97	2931.90	8834.61	
	+ .95	—		•00	•00	·02	·13	1.19	13.97	244.23	$6309 \cdot 15$	
	+ 1.00	•00	•00	•00	·00 <i>·</i>	•00	.00	•00	•00	•00	•00	
	Mean	.0000	.0074	.1050		.9011						
	Mode	.0000	.1154	.19904	-2928	.9811	·4900	.0990	·0902	•7919	•8951	
	σ	.9904	.9974	.9914	.0410	-4000	.1790	.0038	·/48Z	·8374	·9213	
	(1 - 2)/2/2 - 1	9904	-22/4	-4414	-4113	.1908	.1/80	•1043	·1254	.0901	•0493	
	$(1 - p^{-})/\sqrt{n} - 1$	•2294	·22/1	·2202	·2088	·1927	·1721	·1468	·1170	•0826	•0436	
	$\overset{P_1}{\overset{H}{\overset{H}}}$	00000	·U148	00000	•1386	•2557	•4202	•6464	·9584	1.4001	2.0603	
	P2	2.1143	2.1400	z·8213	z·9623	3.1.749	3.4783	3.9055	4.2131	5.4154	6.8681	

TABLE A-(continued).

.

n = 21.

		0	·1	•2	.3	•4	•5	•6	-7	•8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\50\\55\\50\\45\\40\\35\\30\\25\\20\\15\\10\\05\\ +.10\\ +.25\\ +.30\\ +.35\\ +.30\\ +.35\\ +.40\\ +.45\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.70\\ +.75\end{array}$	0 .00 .00 .00 .03 .29 1.52 5.61 16.13 38.65 80.30 148.80 250.78 389.90 565.17 769.89 991.59 1213.06 1414.38 1575.70 1414.38 1575.70 1414.38 1213.06 991.59 769.89 9565.17 389.90 250.78 148.80 991.59 769.89 565.17 389.90 250.78 148.80 80.30 1414.38 1213.06 1414.38 1213.06 991.59 769.89 565.17 389.90 250.78 148.80 80.30 1414.38 1213.06 991.59 165.17 389.90 250.78 148.80 80.30 1414.38 1213.06 991.59 165.17 389.90 250.78 148.80 80.30 1414.38 1213.06 991.59 165.17 389.90 250.78 148.80 1414.38 1575.70 1418.80 80.30 80.50 16.13 5.61 1.52	$\cdot 1$ $\cdot 00$ - 00 $\cdot 01$ $\cdot 06$ $\cdot 34$ $1 \cdot 36$ $4 \cdot 27$ $11 \cdot 22$ $25 \cdot 56$ $51 \cdot 95$ $96 \cdot 10$ $164 \cdot 07$ $261 \cdot 27$ $391 \cdot 17$ $553 \cdot 98$ $745 \cdot 68$ $956 \cdot 73$ $1173 \cdot 63$ $1378 \cdot 59$ $1552 \cdot 13$ $1675 \cdot 52$ $1733 \cdot 68$ $1717 \cdot 73$ $1626 \cdot 97$ $1469 \cdot 48$ $1261 \cdot 29$ $1024 \cdot 10$ $781 \cdot 85$ $556 \cdot 80$ $366 \cdot 00$ $218 \cdot 92$ $1168 \cdot 85$ $554 \cdot 13$ $20 \cdot 90$ $6 \cdot 31$	$\cdot 2$ $\cdot 00$ - $\cdot 00$ $\cdot 01$ $\cdot 07$ $\cdot 299$ 2.82 6.97 15.41 31.04 57.77 100.39 164.25 254.51 375.26 528.299 711.91 919.93 1141.00 1358.90 1553.58 1703.39 1788.20 1792.97 1711.25 1547.62 1318.32 1049.40 772.43 518.34 311.00 162.26 70.68 24.12 254.51 254.51 375.26 528.297 711.91 919.93 1141.00 1553.58 1703.39 1788.20 1792.97 1711.25 1547.62 1318.32 1049.40 772.43 518.34 311.00 162.26 70.68 24.12 254.51 70.68 24.12 70.68 24.12 70.68 24.12 70.68 24.12 70.68 24.12 70.68 24.12 70.68	$\cdot 3$ $\cdot 00$ - $\cdot 00$ $\cdot 01$ $\cdot 05$ $\cdot 19$ $\cdot 60$ $1 \cdot 59$ $3 \cdot 79$ $8 \cdot 26$ $16 \cdot 64$ $31 \cdot 39$ $55 \cdot 82$ $94 \cdot 20$ $151 \cdot 59$ $233 \cdot 39$ $344 \cdot 73$ $489 \cdot 35$ $668 \cdot 33$ $878 \cdot 59$ $1111 \cdot 53$ $1352 \cdot 20$ $1579 \cdot 31$ $1766 \cdot 81$ $1887 \cdot 05$ $1915 \cdot 72$ $1837 \cdot 75$ $1652 \cdot 96$ $1379 \cdot 62$ $1053 \cdot 63$ $722 \cdot 19$ $432 \cdot 22$ $216 \cdot 87$ $85 \cdot 61$	-4 -00 -00 -01 -03 -10 -29 -74 1.74 3.77 7.67 74 1.74 3.77 7.67 7.47 27.02 47.28 79.38 128.23 199.70 300.17 435.79 611.07 827.05 1079.03 1354.17 1629.83 1873.44 2045.23 2104.80 2021.59 1787.57 1427.92 1002.93 595.00 279.97	$\cdot 5$ $\cdot 00$ 	-6 -00 	-7 -00 	·8 ·00 	·9 ·00
	$+ \cdot 80 + \cdot 85 + \cdot 90 + \cdot 95 + 1\cdot 00$	·29 ·03 ·00 — ·00	$ \begin{array}{c c} 1.34 \\ .16 \\ .00 \\ - \\ .00 \\ .00 \\ \end{array} $	5·79 ·80 ·04 ·00 ·00	23.90 3.86 .23 .00 .00	93.95 18.41 1.34 .01 .00	347·48 87·22 8·29 -07 -00	1159·40 404·32 55·40 ·71 ·00	3112·44 1715·20 399·51 9·56 ·00	4787·20 5209·97 2814·91 195·96 ·00	1079-30 3599-09 9080-68 6087-03 -00
	$ \begin{matrix} \text{Mean} \\ \text{Mode} \\ \sigma \\ (1 - \rho^2) / \sqrt{n-1} \\ \beta_1 \\ \beta_2 \end{matrix} $	·0000 ·0000 ·2236 ·2236 ·0000 2·7273	·0976 ·1145 ·2216 ·2214 ·0142 2·7527	·1952 ·2279 ·2157 ·2147 ·0577 2·8306	·2932 ·3391 ·2058 ·2035 ·1331 2·9666	·3916 ·4472 ·1917 ·1878 ·2451 3·1711	-4905 -5515 -1732 -1677 -4020 3-4617	·5902 ·6509 ·1500 ·1431 ·6166 3·8683		·7924 ·8354 ·0880 ·0805 1·3227 5·2858	·8954 ·9203 ·0478 ·0425 1·9288 6·6169

TABLE A. Ordinates and Constants of Frequency Curves.

n = 22.

 ρ variate (correlation in population sampled).

		0	•1	•2	•3	•4	•5	•6	.7	-8	.9
$r_{\rm i}$ variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\45\\40\\35\\30\\25\\20\\15\\20\\15\\20\\ +.10\\ +.05\\ +.00\\ +.55\\ +.60\\ +.55\\ +.60\\ +.65\\ +.50\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.85\\ +.90\\ +.95\end{array}$	0 -00 -00 -01 -02 -18 1.03 4.11 12:59 31:74 68:85 132:30 985:69 1220:22 1435:65 1609:59 1722:72 1761:97 1722:72 1609:59 1435:65 1220:22 985:69 754:00 543:53 366:87 229:92 132:30 68:85 31:74 12:59 31:74 -01 -03 -18 -02 -01 -01 -02 -02 -02 -02 -02 -02 -02 -02	$\begin{array}{c} \cdot 1 \\ \hline 000 \\ -000 \\ \cdot 030 \\ \cdot 211 \\ \cdot 922 \\ 3 \cdot 111 \\ 8 \cdot 655 \\ 20 \cdot 677 \\ 43 \cdot 777 \\ 43 \cdot 770 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 534 \cdot 577 \\ 731 \cdot 560 \\ 370 \cdot 080 \\ 534 \cdot 577 \\ 731 \cdot 560 \\ 370 \cdot 080 \\ 534 \cdot 577 \\ 731 \cdot 560 \\ 370 \cdot 080 \\ 534 \cdot 577 \\ 731 \cdot 560 \\ 370 \cdot 080 \\ 534 \cdot 577 \\ 731 \cdot 560 \\ 370 \cdot 080 \\ 534 \cdot 577 \\ 731 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 241 \cdot 560 \\ 370 \cdot 080 \\ 147 \cdot 700 \\ 147 \cdot 700 \\ 370 \cdot 080 \\ 147 \cdot 700	$\begin{array}{c} \cdot 2 \\ \hline 000 \\ 011 \\ \cdot 044 \\ \cdot 188 \\ \cdot 67 \\ 2 \cdot 02 \\ 5 \cdot 288 \\ 12 \cdot 211 \\ 25 \cdot 588 \\ 12 \cdot 211 \\ 25 \cdot 588 \\ 12 \cdot 211 \\ 25 \cdot 588 \\ 49 \cdot 311 \\ 88 \cdot 411 \\ 148 \cdot 699 \\ 236 \cdot 099 \\ 355 \cdot 633 \\ 510 \cdot 100 \\ 698 \cdot 57 \\ 915 \cdot 066 \\ 1147 \cdot 75 \\ 1379 \cdot 011 \\ 1586 \cdot 655 \\ 1746 \cdot 455 \\ 1835 \cdot 833 \\ 1838 \cdot 17 \\ 1746 \cdot 866 \\ 1035 \cdot 899 \\ 747 \cdot 64 \\ 489 \cdot 266 \\ 284 \cdot 388 \\ 142 \cdot 57 \\ 59 \cdot 044 \\ 18 \cdot 888 \\ 4 \cdot 16 \\ \cdot 511 \\ 0 \cdot 02 \\ 0 \cdot 00 \\ \end{array}$	$\begin{array}{c} \cdot 3 \\ \hline 00 \\ - \\ - \\ 00 \\ \cdot 01 \\ \cdot 03 \\ \cdot 12 \\ \cdot 40 \\ 1 \cdot 12 \\ 2 \cdot 80 \\ 6 \cdot 36 \\ 47 \cdot 84 \\ 83 \cdot 10 \\ 137 \cdot 23 \\ 216 \cdot 26 \\ 47 \cdot 84 \\ 83 \cdot 10 \\ 137 \cdot 23 \\ 226 \cdot 06 \\ 47 \cdot 84 \\ 83 \cdot 10 \\ 137 \cdot 23 \\ 236 \cdot 14 \\ 471 \cdot 58 \\ 654 \cdot 54 \\ 872 \cdot 46 \\ 1116 \cdot 63 \\ 137 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1937 \cdot 29 \\ 1612 \cdot 18 \\ 1811 \cdot 21 \\ 1937 \cdot 29 \\ 1376 \cdot 56 \\ 1032 \cdot 04 \\ 690 \cdot 00 \\ 399 \cdot 58 \\ 1919 \cdot 9 \\ 1137 \cdot 29 \\ 1376 \cdot 56 \\ 1032 \cdot 04 \\ 1376 \cdot 56 \\ 137$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} -5 \\ \hline & 000 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-7 -00 	-8 -00 	·9 ·00
	$ \begin{array}{r} + & \cdot 80 \\ + & \cdot 85 \\ + & \cdot 90 \\ + & \cdot 95 \\ + & 1 \cdot 00 \end{array} $	·18 ·02 ·01 ·00 ·00	*00 ·89 ·10 ·00 ·00	4·16 ·51 ·02 ·00 ·00	11.96 18.48 2.67 .13 .00 .00	248.90 78.00 13.82 .86 .00 .00	773-40 308-91 71-03 5-84 -04 -00	$2011 \cdot 22 \\1098 \cdot 57 \\356 \cdot 95 \\43 \cdot 11 \\\cdot 42 \\\cdot 00$	3745-20 3111-21 1635-37 345-00 6-53 -00	3276-10 4913-78 5281-97 2698-71 157-01 -00	281.79 1034.74 3609.52 9320.25 5864.34 .00
	$\begin{array}{r} + & \cdot 83 \\ + & \cdot 90 \\ + & \cdot 95 \\ + & 1 \cdot 00 \end{array}$ $\begin{array}{r} \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	·02 ·01 ·00 ·00 ·000 ·0000 ·2182	-10 -00 -00 -0077 -1137 -2162	-51 -02 -00 -00 -1955 -2264 -2105	$ \begin{array}{r} 2.67 \\ .13 \\ .00 \\ .00 \\ \hline .2935 \\ .3369 \\ .2007 \\ \end{array} $	13-82 -86 -00 -00 -00 	71.03 5.84 .04 .00 .4910 .5486 .1688	356.95 43.11 .42 .00 .5906 .6484 .1461	1635-37 345-00 6-53 -00 	5281.97 2698.71 157.01 .00 .7928 .8339 .0255	3609·52 9320·25 5864·34 ·00 ·8956 ·9194 ·0464
	$\frac{(1-\rho^2)/\sqrt{n-1}}{\beta_1}$	·2182 ·0000 2·7391	·2160 ·0137 2·7630	·2095 ·0555 2·8390	·1986 ·1279 2·9703	·1833 ·2354 3·1672	·1637 ·3853 3·4461	·1396 ·5893 3·8328	·1113 ·8674 4·3790	·0786 1·2532 5·1687	·0415 1·8125 6·3926

-

TABLE A—(continued).

n = 23.

ę

		0	•1	-2	•3	•4	.5	·6	.7	.8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\55\\50\\40\\35\\30\\25\\25\\20\\15\\10\\05\\ +.00\\ +.05\\ +.00\\ +.25\\ +.30\\ +.25\\ +.30\\ +.25\\ +.30\\ +.45\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.85\\ +.90\\ +.95\\ +.100\end{array}$	<i>0</i> -00 -00 -00 -01 -111 -70 3·01 9·81 26·04 58·96 117·47 210·52 344·75 522·03 737·47 978·54 1225·82 1455·33 1642·05 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1806·56 1764·10 1642·05 1455·33 344·75 522·03 344·75 522·03 -77·47 978·54 1225·82 978·54 737·47 522·03 344·75 522·03 -76 -111 -01 -00 -00 -00	$\begin{array}{c} \cdot I \\ \hline \\ \cdot 00 \\ - \\ 02 \\ \cdot 03 \\ \cdot 03 \\ \cdot 03 \\ \cdot 00 \\ \cdot 02 \\ \cdot 03 \\ \cdot 00	$\begin{array}{c} \cdot 2 \\ \hline \\ -00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{c} \cdot 3 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \cdot 6 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c c} \cdot 7 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c c} \cdot & & \\ \cdot & & \\$	·9 ·00
	$\begin{matrix} \text{Mean} \\ \text{Mode} \\ \sigma \\ (1 - \rho^2)/\sqrt{n-1} \\ \beta_1 \\ \beta_2 \end{matrix}$	·0000 ·0000 ·2132 ·2132 ·2132 ·0000 2·7500	·0978 ·1130 ·2113 ·2111 ·0132 2·7738	·1957 ·2250 ·2056 ·2047 ·0535 2·8467	·2938 ·3351 ·1960 ·1940 ·1232 2·9735	·3923 ·4424 ·1825 ·1791 ·2264 3·1633	·4914 ·5462 ·1647 ·1599 ·3698 3·4313	·5911 ·6461 ·1425 ·1364 ·5645 3·8024	·6916 ·7415 ·1155 ·1087 ·8279 4·3197	·7931 ·8324 ·0832 ·0768 1·1905 5·0623	·8958 ·9185 ·0450 ·0405 1·7092 6·1951

TABLE A. Ordinates and Constants of Frequency Curves.

n = 24.

:

• •		0	•1	•2	•3	•4	•5	•6	-7	.8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\440\\35\\30\\25\\20\\15\\20\\15\\20\\ +.10\\ +.25\\ +.30\\ +.25\\ +.30\\ +.35\\ +.40\\ +.25\\ +.35\\ +.40\\ +.55\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.85\\ +.90\\ +.95\\ +.100\\ +.95\\ +.100\\ \end{array}$	0 -00 -00 -01 -07 -48 2:20 7:63 21:33 50:42 104:18 192:53 323:58 500:79 720:45 970:29 1473:52 1673:17 1804:33 1850:07 1804:33 1673:17 1804:33 1673:17 1804:33 1673:17 1473:52 1229:99 970:29 720:45 500:79 323:58 104:18 50:42 21:33 7:63 2:20 -48 -07 -48 -07 -07 -07 -07 -07 -07 -07 -07	$\begin{array}{c} \cdot 1 \\ \hline \\ 00 \\ - \\ 00 \\ \cdot 08 \\ \cdot 43 \\ 1.65 \\ 5.12 \\ 13.46 \\ 30.95 \\ 5.12 \\ 13.46 \\ 30.95 \\ 63.69 \\ 119.24 \\ 205.69 \\ 329.99 \\ 495.86 \\ 70.70 \\ 938.94 \\ 1191.49 \\ 1436.72 \\ 1648.13 \\ 1799.35 \\ 1868.86 \\ 1844.51 \\ 1726.50 \\ 1528.14 \\ 1273.84 \\ 994.68 \\ 722.40 \\ 1528.14 \\ 1273.84 \\ 994.68 \\ 722.40 \\ 160.45 \\ 76.48 \\ 30.86 \\ 10.05 \\ 2.45 \\ .39 \\ .03 \\ .00 \\ .00 \\ .00 \\ .00 \end{array}$	$\begin{array}{c} \cdot 2 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ 00 \\ \cdot 01 \\ 07 \\ \cdot 30 \\ 1 \cdot 04 \\ 3 \cdot 01 \\ 7 \cdot 63 \\ 17 \cdot 31 \\ 3 \cdot 80 \\ 68 \cdot 31 \\ 121 \cdot 39 \\ 202 \cdot 37 \\ 318 \cdot 18 \\ 473 \cdot 77 \\ 670 \cdot 05 \\ 901 \cdot 95 \\ 1156 \cdot 93 \\ 1414 \cdot 71 \\ 1648 \cdot 62 \\ 1828 \cdot 88 \\ 1927 \cdot 58 \\ 1924 \cdot 68 \\ 1813 \cdot 38 \\ 1603 \cdot 54 \\ 1924 \cdot 68 \\ 1813 \cdot 38 \\ 1603 \cdot 54 \\ 1924 \cdot 58 \\ 1924 \cdot 5$	$\cdot 3$ $\cdot 00$ - - - - - - - -	$\begin{array}{c} \cdot 4 \\ \hline 000 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} \cdot 5 \\ \hline 000 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} \cdot 6 \\ \hline \\ 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} .7\\00\\\\\\\\\\\\\\$	$\begin{array}{c} \cdot 8 \\ \hline 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	·9 -00
	$\begin{array}{c} \operatorname{Mean} \\ \operatorname{Mode} \\ \sigma \\ (1-\rho^2)/\sqrt{n-1} \\ \beta_1 \\ \beta_2 \end{array}$	·0000 ·0000 ·2085 ·2085 ·0000 2·7.600	-0979 -1124 -2067 -2064 -0127 2-7826	·1959 ·2238 ·2011 ·2002 ·0516 2·8537	·2941 ·3334 ·1916 ·1897 ·1187 2·9764	·3927 ·4404 ·1783 ·1752 ·2180 3·1596	·4918 ·5441 ·1609 ·1564 ·3557 3·4174	·5915 ·6440 ·1391 ·1334 ·5419 3·7774	·6920 ·7397 ·1127 ·1063 ·7918 4·2653	·7934 ·8310 ·0811 •0751 1·1335 4·9654	·8960 ·9178 ·0438 ·0396 1·6167 6·0161

TABLE A—(continued).

n = 25.

		0	·1	•2	•3	•4	•5	·6	•7	.8	.9
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\90\\85\\80\\75\\70\\65\\60\\55\\50\\45\\40\\35\\30\\45\\40\\35\\50\\45\\40\\35\\40\\ +.15\\40\\ +.15\\ +.20\\ +.25\\ +.30\\ +.35\\ +.40\\ +.45\\ +.55\\ +.60\\ +.65\\ +.70\\ +.75\\ +.80\\ +.85\end{array}$	$\begin{array}{c} 0\\ \hline \\ 0\\ \hline \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} \cdot 1 \\ \hline \\ \cdot 00 \\ - \\ - \\ - \\ \cdot 00 \\ \cdot 05 \\ \cdot 29 \\ 1 \cdot 20 \\ 3 \cdot 93 \\ 1 \cdot 08 \\ 5 \cdot 40 \\ 106 \cdot 96 \\ 189 \cdot 49 \\ 311 \cdot 08 \\ 476 \cdot 77 \\ 686 \cdot 08 \\ 930 \cdot 93 \\ 1194 \cdot 73 \\ 1453 \cdot 28 \\ 1677 \cdot 56 \\ 1838 \cdot 37 \\ 1911 \cdot 80 \\ 1884 \cdot 46 \\ 1756 \cdot 95 \\ 1544 \cdot 63 \\ 1275 \cdot 10 \\ 982 \cdot 79 \\ 701 \cdot 99 \\ 460 \cdot 12 \\ 273 \cdot 17 \\ 144 \cdot 33 \\ 66 \cdot 25 \\ 25 \cdot 53 \\ 7 \cdot 85 \\ 1 \cdot 78 \\ \cdot 26 \\ \cdot 02 \end{array}$	$\begin{array}{c} \cdot 2 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ 00 \\ \cdot 05 \\ \cdot 21 \\ \cdot 75 \\ 2 \cdot 27 \\ 6 \cdot 01 \\ 14 \cdot 22 \\ 30 \cdot 45 \\ 59 \cdot 94 \\ 109 \cdot 50 \\ 187 \cdot 04 \\ 300 \cdot 46 \\ 455 \cdot 82 \\ 655 \cdot 13 \\ 893 \cdot 96 \\ 1159 \cdot 60 \\ 187 \cdot 04 \\ 300 \cdot 46 \\ 455 \cdot 82 \\ 655 \cdot 13 \\ 893 \cdot 96 \\ 155 \cdot 60 \\ 155 \cdot 672 \cdot 95 \\ 408 \cdot 43 \\ 215 \cdot 85 \\ 95 \cdot 99 \\ 34 \cdot 15 \\ 8 \cdot 99 \\ 34 \cdot 15 \\ 8 \cdot 99 \\ 34 \cdot 15 \\ 8 \cdot 99 \\ - \cdot 53 \\ \cdot 13 \\ \end{array}$	$\begin{array}{c} \cdot 3 \\ \hline & \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} \cdot 4 \\ \hline 000 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\cdot 5$ $\cdot 00$ - - - - - - - - - -	$\begin{array}{c} \cdot 6 \\ \hline 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\cdot 7$ $\cdot 00$ - - - - - - - -	$\cdot 8$ $\cdot 00$ - - - - - - - -	·9 -00
	$+ \cdot 85 + \cdot 90 + \cdot 95 + 1\cdot 00$	·00 — — ·00	·02 ·00 — ·00	-13 -00 -00	·88 ·00 — ·00	5.81 ·22 ·00 ·00	38.09 2.03 .01 .00	243.81 20.16 .09 .00	1407-18 220-57 2-07 -00	5464.05 2360.87 80.18 .00	3614·59 10004·61 5206·06 ·00
	$ \begin{array}{c} \underbrace{\text{Mean}}_{\text{Mode}} \\ \sigma \\ (1 - \rho^2)/\sqrt{n-1} \\ \beta_1 \\ \beta_2 \end{array} $	·0000 ·0000 ·2041 ·2041 ·0000 2·7692	·0980 ·1118 ·2023 ·2021 ·0123 2·7916	·1960 ·2227 ·1968 ·1960 ·0499 2·8601	·2943 ·3318 ·1875 ·1858 ·1146 2·9788	·3930 ·4385 ·1744 ·1715 ·2102 3·1559	·4921 ·5421 ·1573 ·1531 ·3423 3·4042	·5918 ·6420 ·1359 ·1306 ·5203 3·7453	·6923 ·7380 ·1100 ·1041 ·7586 4·2149	·7937 ·8297 ·0791 ·0735 1·0816 4·8769	·8962 ·9170 ·0427 ·0388 1·5334 5·8584

TABLE A. Ordinates and Constants of Frequency Curves.

n = 50.

 ρ variate (correlation in population sampled).

			1		1	1	1	1	<u> </u>	1	1	
		0	•1	•2	•3	•4	.5	•6	.7	.8		.9
										J		
	1.00	00	00						-			
	- 1.00	•00	•00	•00	•00	•00	•00	·00	·00	•00	.67	$\cdot 2$
	90				-		-	-	-	-	•68	•3
	85						-	-	-		·69	•6
	80						-		-		•70	1.0
	75		_							-	•71	1.7
	70	.00						-			.72	$2 \cdot 9$
	65	.01					-		-		.73	5.1
	60	·10	•00		_				-		• •74	8.8
	55	·69	•04	•00				_			•75	15.3
	50	3.68	·27	•01							•76	26.7
(e)	- •45	15.10	1.40	.08	•00			_			÷ .77	46.4
d	- •40	49.85	5.82	•44	.02							80.4
B	- •35	136.13	20.06	1.88	·11	•00	_				E .00	138.9
Sa	30	314.21	58.57	6.85	•48	·02			_		10. 39	238.4
u	25	$623 \cdot 17$	147.07	21.50	1.85	.09		_	_		82	400.0
	- ·20	$1075 \cdot 24$	321.70	59.02	6.32	·36	•00	·	_	_		1124.9
on	15	$1629 \cdot 13$	618.58	142.88	19.11	1.35	·04				5.84	1848.9
÷	10	$2182 \cdot 12$	1052.79	307.18	51.61	4.55	·18	•00			·II ·85	2936.7
ela	05	2595.77	1593.19	589.27	125.03	13.87	·68	•01			86. E	4519.5
E I	•00	2749.60	2149.47	1011.38	272.76	38.38	2.39	·05	—	<u> </u>	₽ ·87	6673.8
3	+ 00	2595.77	2587.70	1554.59	535.97	96.53	7.70	·20	•00		5 .88	9340.1
5	+ .10	2182.12	2777.44	2138.36	948.41	220.60	22.82	•78	·01		<u> </u>	12187.5
te	+ .10	1029.13	2000-80	2625.45	1507.84	457.26	62.11	2.82	$\cdot 02$		e .90	14502.0
la	+ .20 + .25	692.17	2239.38	2864.46	2144.80	856.50	154.86	9.46	·11	—	ਰੋਂ ∙91	15261.3
al	+ .20	214.91	1003.32	2/28.70	2712.27	1441.46	351.85	29.47	·48		·Ę .92	13599.9
>	+ .35	136.13	500.07	2020.98	3022.24	2101.00	723.72	84.89	1.99	•00	₿ <i>•93</i>	9630.6
5	+ .40	49.85	282.26	1091.45	2952.02	2800.13	1333.93	224.22	7.75	·02	<i>ب</i> .94	4918 .7
	+ .45	15.10	110.16	538.66	1700.04	3274.03	2172.97	536·92	28.37	•09	.95	1550.4
	+ .50	3.68	34.61	224.22	967.26	9575.61	3669.50	1147.17	96.36	•51	·96	230.3
	+ .55	.69	8.42	72.63	432.21	1656-86	3578.51	2138.19	298.71	2.85	.97	9.6
	+ .60	·10	1.51	17.37	143.93	807.35	9713.96	3312·39 4200.95	824.00	15.26	.98	•3
	+ .65	·01	·18	2.84	33.16	276.92	1489.70	4159.55	1904.10	76.77	$\cdot 99$	•0
	+ .70	•00	·01	.29	4.73	59.97	532.70	9747.04	5209.91	300.00		
	+ .75		.00	·01	-35	6.91	104.96	1061.01	1000.06	1307.03		
	+ .80			.00	·01	32	8.58	181.02	2306.06	7650.44		
	+ .85	_		_	.00	.00	.17	8.16	322.77	5817.20		1
	+ .90						.00	.03	4.26	621.81		
	+ •95		_					•00	00	.24		
	+ 1.00	•00	•00	•00	·00	•00	•00	·00	-00	-00		
1												

For the constants of the curves for n=50: see p. 372 above.

TABLE A—(continued).

n = 100.

.

ρ variate (correlation in population sampled).

		0	·1	•2	.3	•4	-5	•6	.7	•8		.9	.9 (normal . curve)*
r variate (correlation in sample).	$\begin{array}{c} -1.00\\95\\80\\75\\65\\65\\65\\55$	-00 	$\begin{array}{c} \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} -00\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} -00\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} -00\\\\\\\\\\\\\\\\\\$	$\begin{array}{c} \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} -00\\\\\\\\\\\\\\\\\\$	-00 	r variate (correlation in sample). 1 0068246665656688288888888882 006822995666822995888888888295572822.	$\begin{array}{c} \cdot 1 \\ \cdot 2 \\ \cdot 5 \\ 1 \cdot 4 \\ 4 \cdot 0 \\ 11 \cdot 3 \\ 31 \cdot 3 \\ 84 \cdot 7 \\ 221 \cdot 8 \\ 556 \cdot 2 \\ 1320 \cdot 0 \\ 2919 \cdot 0 \\ 5895 \cdot 9 \\ 10597 \cdot 3 \\ 16373 \cdot 8 \\ 20754 \cdot 4 \\ 20233 \cdot 5 \\ 13848 \cdot 4 \\ 5823 \cdot 1 \\ 1227 \cdot 8 \\ 93 \cdot 7 \\ 1 \cdot 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{c} \cdot 0 \\ - \\ - \\ - \\ 2 \\ \cdot 3 \\ 3 \\ 2 \\ 2 \\ 5 \\ 3 \\ 3 \\ 2 \\ 2 \\ 5 \\ 3 \\ 2 \\ 2 \\ 5 \\ 3 \\ 1 \\ 5 \\ 6 \\ 2 \\ 3 \\ 0 \\ 1 \\ 5 \\ 6 \\ 1 \\ 5 \\ 1 \\ 1$

* These ordinates indicate how poor is the approximation of a normal curve to the frequency of r, where n is 100, but ρ is large.

For the constants of the curves for n = 100: see p. 372 above.

TABLE A. Ordinates and Constants of Frequency Curves.

n =	400.	
-----	------	--

 ρ variate (correlation in population sampled).

										-						
	0	·1	·2	.3	•4	•5	•6			.7	•7 normal*	•8	·8 normal*	.9	.9 normal*	
r variate (correlation in sample). ++++++++++++++++++++++++++++++++++++	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \cdot 00 \\ - \\ - \\ - \\ 00 \\ \cdot 03 \\ 6 \cdot 72 \\ 89 \cdot 41 \\ 107 \cdot 103 \\ 4809 \cdot 08 \\ 8034 \cdot 24 \\ 4878 \cdot 55 \\ 1037 \cdot 29 \\ 72 \cdot 74 \\ 1 \cdot 55 \\ \cdot 01 \\ \cdot 00 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} \cdot 00 \\ \\ \\ \\ \\ \\ 00 \\ \cdot 03 \\ 2 \cdot 31 \\ 77 \cdot 24 \\ 990 \cdot 50 \\ 4767 \cdot 51 \\ 8285 \cdot 39 \\ 4910 \cdot 62 \\ 917 \cdot 19 \\ 48 \cdot 55 \\ \cdot 63 \\ \cdot 00 \\ \\ \\ \\ \\ \\ \\ $	-00 	·00 	·00 	·00 	r variate (correlation in sample).	$\begin{array}{c} \cdot 54 \\ \cdot 55 \\ \cdot 58 \\ \cdot 59 \\ \cdot 601 \\ \cdot 623 \\ \cdot 667 \\ \cdot 667 \\ \cdot 667 \\ \cdot 772 \\ \cdot 774 \\ \cdot 775 \\ \cdot 777 \\ \cdot 778 \\ \cdot 801 \\ \cdot 823 \\ \cdot 845 \\ \cdot 887 \\ \cdot 889 \\ \cdot 901 \\ \cdot 934 \\ \cdot 956 \\ \cdot 999 \\ \cdot 990 \\ \cdot 9$	·0 -1 -2 -8 2.8 9·3 28.7 82·9 221·2 542·5 1212·0 2478·7 4553·8 7487·9 10922·9 13999·7 15598·3 14931·6 12106·9 8212·0 4572·5 2052·1 726·6 198·1 40·5 6·0 	$\begin{array}{c} \cdot 0 \\ - \\ - \\ - \\ 0 \\ \cdot 2 \\ 1 \cdot 4 \\ 7 \cdot 3 \\ 3 1 \cdot 3 \\ 1 15 \cdot 3 \\ 3 6 4 \cdot 4 \\ 9 87 \cdot 7 \\ 2 296 \cdot 4 \\ 4 579 \cdot 8 \\ 7 834 \cdot$	$\begin{array}{c} \cdot 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	·0 -0 -0 -0 -0 -1 -0 -1 -0 -1 -2 11.7 86.8 471.8 1885.6 5538.9 11958.6 18977.4 122135.7 18977.4 11958.6 5538.9 11958.6 5538.9 11958.6 18977.4 11958.6 5538.9 1885.6 471.8 86.8 81.1.7 1.22 -1 -0 -0 -1 -0 -0 -1 -0 -0 -1 -0 -0 -1 -1 -0 -0 -1 -0 -0 -1 -0 -0 -1 -0 -0 -1 -0 -0 -1 -0 -0 -1 -0 -0 -0 -1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	·0 -0 	·0 	404 Distribution of Correlation Coefficient in Small Samples

* The columns headed 'normal' mark how roughly the Gaussian frequency describes the distribution of the correlation

even for large samples, if the correlation be not small in the sampled population.

For the constants of the curves for n = 400: see p. 372 above.

TABLE B*. To assist the calculation of the Ordinates of the Correlation Frequency Curves from Expansion Formulae.

		1	n-2					ρ	= 0.			
		log	$\sqrt{n-1}$.					log (1 –	- ρ²) [±] =	= 0 .		
n	$\log \frac{n-2}{\sqrt{n-1}}$	n	$\log \frac{n-2}{\sqrt{n-1}}$	n	$\log \frac{n-2}{\sqrt{n-1}}$	r	$\log \chi_1$	log χ ₂	φ1	φ2	φ3	Φι
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\bar{1} \cdot 8494850$ $\cdot 0624694$ $\cdot 1760913$ $\cdot 2525750$ $\cdot 3098944$ $\cdot 3556022$ $\cdot 3935530$ $\cdot 4259687$ $\cdot 4542425$ $\cdot 4793037$ $\cdot 5018021$ $\cdot 522096$ $\cdot 5408793$ $\cdot 5580824$ $\cdot 5740313$ $\cdot 588955$ $\cdot 6028127$ $\cdot 6158957$ $\cdot 6282386$ $\cdot 6399203$ $\cdot 6510080$ $\cdot 6615588$ $\cdot 6716222$ $\cdot 6812412$ $\cdot 6812412$ $\cdot 6812412$ $\cdot 6812412$ $\cdot 6812412$ $\cdot 6992915$ $\cdot 7077847$ $\cdot 7159590$ $\cdot 7238374$ $\cdot 7387867$ $\cdot 7458930$ $\cdot 7527745$ $\cdot 7594449$ $\cdot 7659168$ $\cdot 7722016$ $\cdot 7783099$ $\cdot 7842513$ $\cdot 7900346$	$\begin{array}{c} 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 99\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 71\\ 72\\ 73\\ 74\\ 75\\ 66\\ 67\\ 77\\ 78\\ 98\\ 70\\ 1\\ 77\\ 78\\ 80\\ 70\\ 1\\ 78\\ 80\\ 70\\ 1\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 78\\ 80\\ 70\\ 1\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78$	-7956681 -8011592 -8065151 -8117421 -8168464 -8218336 -8267089 -8314772 -8361432 -8407111 -8451849 -8451849 -8458654 -8538654 -8538654 -8538654 -8580790 -8622124 -8662687 -8702506 -8741609 -8780020 -8817764 -8854863 -8891340 -8927214 -8962506 -8997233 -9031414 -9065065 -9098203 -9130844 -9163001 -9194689 -9225921 -9256711 -9287070 -9317011 -9346545 -9375682 -9404434 -9432811	81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 400	-9460821 -9488475 -9515781 -9542748 -9569384 -9621697 -9647388 -9672779 -9697877 -9722688 -9747218 -97747218 -97747218 -9795464 -9819190 -9842661 -9865880 -9888854 -9911587 -9934085 1-2993966	$\begin{array}{c}95\\85\\75\\75\\765\\55\\45\\45\\25$	$\begin{array}{r} \cdot 5054977\\ \cdot 3600232\\ \cdot 2783685\\ \cdot 2218487\\ \cdot 1795110\\ \cdot 1462149\\ \cdot 1192240\\ \cdot 0969100\\ \cdot 0782279\\ \cdot 0624694\\ \cdot 0491347\\ \cdot 0378604\\ \cdot 0204793\\ \cdot 0140144\\ \cdot 00283764\\ \cdot 0005435\\ \cdot 0\\ \cdot 0\\ \cdot 0005435\\ \cdot 0\\ \cdot $	$ \frac{\bar{2}}{1} \cdot 8825969 \\ \overline{1} \cdot 3172203 \\ \overline{1} \cdot 5639844 \\ \overline{1} \cdot 7335437 \\ \overline{1} \cdot 8605570 \\ \overline{1} \cdot 9604452 \\ \cdot 0414179 \\ \cdot 1083599 \\ \cdot 1644063 \\ \cdot 2116818 \\ \cdot 2516860 \\ \cdot 2855089 \\ \cdot 3139606 \\ \cdot 3376520 \\ \cdot 3570469 \\ \cdot 3724968 \\ \cdot 3724968 \\ \cdot 3925427 \\ \cdot 3974593 \\ \cdot 3990899 \\ \cdot 3376520 \\ \cdot 33724968 \\ \cdot 3570469 \\ \cdot 3376520 \\ \cdot$	$\phi_1=\cdot 25$	$\phi_2=\cdot 03125$	$\phi_3=0390625$	$\phi_4=-\ \cdot 0102539$

* If the ordinate at r be y, then (see p. 348)

$$y = Y\left(1 + \frac{\phi_1}{n-1} + \frac{\phi_2}{(n-1)^2} + \frac{\phi_3}{(n-1)^3} + \frac{\phi_4}{(n-1)^4}\right),$$

g $Y = \log \frac{n-2}{\sqrt{n-1}} + \log (1-\rho^2)^{\frac{3}{2}} - (n-1)\log \chi_1 - \log \chi_2.$

where

$$\log Y = \log \frac{n-2}{\sqrt{n-1}} + \log (1-\rho^2)^{\frac{3}{2}} - (n-1) \log \chi_1 - \log \chi_2.$$

All these quantities are given for r = -.95 to +.95 and $\rho = 0.0$ to 0.9 in this Table B.

TABLE	B.	To assist the	calculation	of the	Ordinates of th	he Correlation	Frequency	Curves
			from .	Expans	ion Formulae.		1 0	

 $\rho = \cdot 1.$

			ρ =	··1.					$\rho = \cdot 2.$	
		log (1	$(-\rho^2)^{\frac{3}{2}} =$	• 1 •993452	28.		lo	$g(1- ho^2)$	$\overline{\overline{\overline{3}}} = \overline{1} \cdot 9734$	068.
r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	φ4	r	$\log \chi_1$	$\log \chi_2$	φ1
95	.5470942	1.8563426	.938195	.0220782	.0264766	0012075	0.5			
90	•4002321	1.2919599	-23875	0223785		-0013075	-:90	.5899090	1.8182302	•22625
85	·3159806	1.5397223	.239375	0233893	0368193	-0017544	90	•4413696	1.2546862	•2275
80	$\cdot 2574549$	$\bar{1}.7102846$: .24	.0242	0369750	0021000	00	.3004188	1.5032983	•22875
75	·2131018	1.8383056	·240625	0246143	0371342	0030466	- 75	-2901711	1.0/4/210	.23
70	$\cdot 1777811$	$\bar{1}.9392061$	$\cdot 24125$	0.0250320	- 0372898	0034943	70	.9110841	1.0052006	.23120
65	$\cdot 1487560$	$\cdot 0211959$	$\cdot 241875$	$\cdot 0254533$	0374417	0039470	65	-1911669	1.0993990	·2323 .99975
60	·1243983	·0891598	$\cdot 2425$	$\cdot 0258781$	0375900	0044047	60	.1540094	.0571577	.095
55	·1036628	$\cdot 1462328$	$\cdot 243125$	$\cdot 0263064$	0377346	0048672	55	.1324153	.1151516	.92695
50	·0858411	$\cdot 1945400$	$\cdot 24375$	$\cdot 0267383$	0378754	0053345	50	$\cdot 1127264$.1643093	.9375
- • 45	$\cdot 0704333$	$\cdot 2355806$	$\cdot 244375$	$\cdot 0271736$	0380123	0058066	45	.0954255	-2063796	.23875
40	0570761	$\cdot 2704450$	$\cdot 245$	$\cdot 0276125$	0381453	0062833	40	·0801485	·2422038	.24
- • 35	$\cdot 0454992$	$\cdot 2999432$	$\cdot 245625$	0.0280549	0382744	0067646	35	·0666246	·2726756	·24125
30	$\cdot 0354989$	$\cdot 3246862$	$\cdot 24625$	$\cdot 0285008$	0383994	0072503	30	0546496	2984059	.9425
25	0.0269206	·3451377	$\cdot 246875$	$\cdot 0289502$	0385204	0077405	25	.0440680	-3198590	.24375
20	$\cdot 0196470$	·3616495	$\cdot 2475$	$\cdot 0294031$	0386373	0082349	20	.0347621	·3373870	.245
- • 15	$\cdot 0135901$	$\cdot 3744849$	$\cdot 248125$	$\cdot 0298596$	0387500	0087336	15	0266432	.3512533	.24625
10	·0086862	·3838348	$\cdot 24875$	$\cdot 0303195$	0388585	0092363	10	·0196470	·3616495	.2475
05	$\cdot 0048920$	·3898291	$\cdot 249375$	$\cdot 0307830$	0389627	0097431	05	$\cdot 0137293$	·3687055	·24875
.00	$\cdot 0021824$	$\cdot 3925427$	$\cdot 25$	$\cdot 03125$	0390625	0102539	.00	0088644	$\cdot 3724968$	$\cdot 25$
+.05	0005490	$\cdot 3920005$	$\cdot 250625$.0317205	0391579	0107685	+.05	0050431	$\cdot 3730485$	$\cdot 25125$
$+ \cdot 10$	•0	$\cdot 3881779$	$\cdot 25125$	$\cdot 0321945$	0392490	- 0112869	+.10	$\cdot 0022729$	·3703365	$\cdot 2525$
+.15	0005603	$\cdot 3809998$	$\cdot 251875$	$\cdot 0326721$	0393354	0118089	+.15	0005777	$\cdot 3642861$	$\cdot 25375$
+.20	0022729	$\cdot 3703365$	$\cdot 2525$	$\cdot 0331531$	-·0394174	- ·0123344	+.20	·0	$\cdot 3547680$	$\cdot 255$
+.25	$\cdot 0052014$	$\cdot 3559973$	$\cdot 253125$	$\cdot 0336377$	0394947	0128634	+.25	$\cdot 0006024$	$\cdot 3415919$	-25625
+.30	0094334	$\cdot 3377189$	$\cdot 25375$	$\cdot 0341258$	0395674	0133957	+.30	$\cdot 0024715$	$\cdot 3244949$	$\cdot 2575$
+.35	.0150862	$\cdot 3151498$	$\cdot 254375$	$\cdot 0346174$	- •0396353	-·0139313	+.35	$\cdot 0057238$	·3031260	$\cdot 25875$
+.40	022314()	$\cdot 2878260$	$\cdot 255$	$\cdot 0351125$	- •0396984	0144700	+.40	$\cdot 0105126$	$\cdot 2770218$	·26
+.45	0313204	·2551371	$\cdot 255625$	0356111	0397568	- 0150118	+.45	·0170404	$\cdot 2455721$	$\cdot 26125$
+.50	0423754	·2162728	·25625	0361133	0398102	0155564	+.50	0255763	$\cdot 2079674$	$\cdot 2625$
+.22	07222002	·1701431	·256875	$\cdot 0366189$	0398587	0161038	+.55	$\cdot 0364823$	·1631181	$\cdot 26375$
+.60	·0/22203	1152488	·2575	0.0371281	0399021	0166540	+.60	$\cdot 0502571$	$\cdot 1095254$	$\cdot 265$
+.00	0922180	-0494649	·258125	0.0376408	0399406	0172067	+.65	$\cdot 0676076$	0450651	·26625
+•70	1108803	1.9696565	·25875	$\cdot 0381570$	- 0399739	0177618	+.70	$\cdot 0895777$	1.9666028	$\cdot 2675$
+.75	·1478351	1.8709390	·259375	·0386768	0400021	- 0183193	֥75	$\cdot 1177943$	$\bar{1}.8692544$	$\cdot 26875$
+.811	1878190	$\frac{1}{1}$,7451026	·26	·0392	0400250	0188790	+.80	$\cdot 1549924$	1.7448109	·27
+.90	·2419720	1.5767267	·260625	0.0397268	0400427	0194408	+.85	$\cdot 2063110$	1.5778522	$\cdot 27125$
+.90	·3218470	$\frac{1}{2}$ 3311524	·26125	•0402570	0400550	0200045	$+\cdot 90$	$\cdot 2833014$	$\bar{1}.3337203$	$\cdot 2725$
+.90	•4043287	z·8977254	·261875	·0407908	0400620	0205702	+.95	$\cdot 4228471$	$\bar{2}.9017612$	·27375

~

TABLE B-(continued).

$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 9734068.$ ϕ_3 ϕ_4 $\log \chi_2$ ¢2 ϕ_2 ϕ_3 ϕ_4 r $\log \chi_1$ ϕ_1 -.0280527+.0104960 $\bar{2}.7667074$ $\cdot 0102424$ ·0159758 -.0326811+.0057193-.95 $\cdot 6348801$ $\cdot 214375$ ·0166531 ·0173445 -.0288235+.0098985+.0050816 4849062 ·2038806 ·21625 ·0110633 - .0331264 -.90 -.0295824.3974915 +.0092418+.0044192 ī $\cdot 4532246$ ·218125 0119158-.0335620-.85 ·0128 -.0303250+.0085260- .80 ·3357497 $\bar{1}.6253949$ -.0339875+.0037321.22 ·01805 ·0137158 -.0310528+.0077516.7550511 $\cdot 221875$ ·0187695 -.0344025+.0030208- ·75 $\cdot 2881264$ +.0069189+.0022856 $\cdot 0146633$ -.0317633·0195031 -.0348065-.70 ·2494796 Ī·8576146 $\cdot 22375$ ·2170712 ·1892713 +.0015269ī·9412961 $\cdot 225625$ ·0156424 -.0324549+.0060287·0202508 - •0351990 -.65 ·0109810 ·0166531 - .0331264 +.0050816 $\cdot 2275$ - .60 +.0007451 $\cdot 0210125$ -.0355797.0176955 -.0337760+.0040787- .0000593 $\cdot 1650331$ $\cdot 0698054$ $\cdot 229375$ ·0217883 - .0359481 - •55 +.0030208 -.0344025- .0363037 -.0008860 -.50 $\cdot 1436465$ $\cdot 1198950$ $\cdot 23125$ ·0187695 0225781·1246098 $\cdot 1627501$ ·233125 ·0198752 -.0350042+.0019092 $\cdot 0233820$ -.0366462-.0017344 -·45 $\cdot 0210125$ -.0355797+.0007451- .0369750 -.0026040 -- •40 ·1075577 ·1994619 $\cdot 235$ $\cdot 0242$ ·2308416 ·0221814 ·0233820 $\cdot 236875$ -.0361275-.00046990250320 - .0372898 -.0034943- •35 ·0922180 -.0366462-.0371342- .0017344 $\cdot 23875$ 0258781-.0375900-.0044047-.30 0.0783851 $\cdot 2575009$ -.0030466-.25 ·0659021 $\cdot 2799047$ ·240625 $\cdot 0246143$ $\cdot 0267383$ -.0053345-.0378754·0546496 0258781-.0375900-.0044047-.0062833 - .20 -2984059 $\cdot 2425$ 0276125 -.0381453·3132690 ·244375 -.0380123 -.0058066 0271736 -.0383994-.0072503- •15 $\cdot 0445372$ 0285008 -.0072503 $\cdot 3246862$ -.03839940.0294031- .0386373 -.0082349 -.10 ·0354989 $\cdot 24625$ $\cdot 0285008$ ·0298596 - .0387500 -.0087336·0303195 ·03125 -.0388585 -.0092363 -.05 ·0274889 $\cdot 3327884$ ·248125 -.0102539 - .0390625 -.0102539 .00 ·0204793 $\cdot 3376520$ ·25 $\cdot 03125$ -.0390625·3393033 $\cdot 251875$ ·0326721 -.0393354-.0118089 ·0144591 -.0112869 +.050.0321945-.0392490 $\cdot 0341258$ -.0395674-.0133957 $\cdot 0094334$ ·3377189 .0331531-.0394170-.0123344 +.10 $\cdot 25375$ -.0397568-.0399021- .0150118 -.0133957 $\cdot 0054243$ $\cdot 3328255$ $\cdot 255625$.0356111 $\cdot 0341258$ -.0395674+.15-.0144700-.0155564 $+\cdot 20$ - .0166540 $\cdot 0024715$ ·3244949 $\cdot 0371281$ - .0396984 $\cdot 2575$.0351125+.25·0006354 $\cdot 3125381$ $\cdot 259375$ ·0386768 -.0400021-.0183193 ·0361133 -.0398102 $\cdot 0402570$ -.0400550 -.0200045·0 ·0006788 $\cdot 26125$ +.30 $\cdot 2966934$.0371281-.0399021-.0166540- .0400595 -.0217064.0381570 - .0399739 - .0177618 +.35 $\cdot 2766112$ $\cdot 263125$ $\cdot 0418689$ - .0234213 - •0400141 - .0400250 -.0188790+.40 ·0028223 $\cdot 2518296$ $\cdot 265$ 0435125.0392- .0200045 $\cdot 0066301$ $\cdot 2217400$ ·266875 0.0451877-.0399172-.0251457 $\cdot 0402570$ - .0400550 ֥45 ·0123676 - .0397675 - .0268757 $\cdot 26875$ 0468945 $\cdot 1855345$.0413281-.0400635-.0211375+.50- ·0395633 - ·0393033 -.0286077 $\cdot 270625$ $\cdot 0486330$ $\cdot 0424133$ - .0400500 -.0222767+.55 $\cdot 0203937$ $\cdot 1421251$.0435125 -.0303374-.0400141 -.0234213+.60 $\cdot 0312032$ ·0900151 $\cdot 2725$ 0504031 ·274375 ·27625 ·0454992 ·0643213 0522049 - .0389860 - .0320608 $\cdot 0270821$ -.0399553 $\cdot 0245700$ +.650446258·0540383 -.0386098 - .0337735 1.9501937 $\cdot 0457531$ -.0398732-.0257219+.70- .0354711 -.0381733·0892920 ·0559033 ·0468945 -.0397675 -.0268757+.75 $\overline{1}.8544683$ $\cdot 278125$ -.0371490 ·04805 -.0396375-.0280304+.80 $\cdot 1231416$ ī.7316990 ·28 .0578-.0376750-.0388026 $\cdot 1710041$ ·281875 0597283 - .0371134 $\bar{1}.5664684$ -.0394829-.02918470.0492195+ • 85 $\cdot 2444254$ -.0364871-.0404269ī·3241210 0.0616883·0504031 -.0393033 -.0303374 +.90 $\cdot 28375$ -.0357945-.0420171 $\cdot 285625$.06367990516008-.0390982-.0314873+.95 $\cdot 3802830$ 1.8940059

 $\rho = \cdot 2.$

 $\rho = \cdot 3.$ $\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 9385621.$

TABLE	B.	To	assist	the	calculation	of	the	Ordinates	of	the	Correlation	Frequency	Curves
					from 1	Exp	oans	ion Formu	lae			2 0	

		log (1	$(-\rho^2)^{\frac{3}{2}}$	$=\overline{1}\cdot 8864$	189.			$\log (1 - \rho$	$(2)^{\frac{3}{2}} = \overline{1} \cdot 812$	5919.
<i>r</i>	$\log \chi_1$	log χ ₂	φ1	ϕ_2	φ3	φ4	<i>r</i>	$\log \chi_1$	$\log \chi_2$	φ1
95	·6832371	$\bar{2}$.6990762	·2025	.0057781	0229682	+.0120113	05	.7267501	9.6107097	100007
90	·5320225	1.1368698	·205	.0066125	0240578	+.0125970	90	-5844606	1.0401927	190025
85	·44333337	1.3868509	$\cdot 2075$.0075031	0251404	+.0121802	85	•4946527	1.2006680	.106975
80	·3802830	<u>1</u> ·5596756	·21	·00845	0262125	+.0116596	80	•4304462	1.4730716	.2
75	$\cdot 3313147$	<u>1</u> .6900043	$\cdot 2125$.0094531	0272705	+.0110342	75	.3802830	1.6039976	.203125
70	$\cdot 2912852$	<u>1</u> ·7932591	$\cdot 215$	$\cdot 0105125$	0283109	+.0103034	70	.3390180	1.7078702	200120
65	$\cdot 2574549$	1.8776516	·2175	·0116281	0293303	+.0094672	65	·3039093	1.7929019	209375
60	•2281921	1.9480680	$\cdot 22$	·0128	0303250	+ 0085260	60	$\cdot 2733227$	1.8639801	·2125
	•2024481	$\cdot 0076453$	$\cdot 2225$	·0140281	0312916	+.0074804	- • 55	$\cdot 2462074$	$\bar{1}.9242431$	$\cdot 215625$
90	1795110	·0585101	$\cdot 225$	$\cdot 0153125$	0322266	+.0063318	- •50	$\cdot 2218487$	$\bar{1}.9758187$	·21875
40	1588770	·1021639	$\cdot 2275$	$\cdot 0166531$	0331264	+.0050816	- •45	$\cdot 1997401$	·0202098	$\cdot 221875$
40	1401787	·1396988	·23	·01805	0339875	+.0037321	40	$\cdot 1795110$.0585101	$\cdot 225$
- 30	1231410	•1719271	·2325	0.0195031	0348065	+.0022856	- •35	$\cdot 1608837$	·0915336	$\cdot 228125$
- 30	.1075577	·1994619	·235	0210125	0355797	+.0007451	- • 30	$\cdot 1436465$	·1198950	$\cdot 23125$
- 20	.090140#	•2227094	·23/5	·0225781	0363037	0008860	- 25	$\cdot 1276363$	$\cdot 1440625$	$\cdot 234375$
	.0691079	•2422038	·24	·0242	- 0369750	0026040	20	$\cdot 1127264$	$\cdot 1643923$	·2375
10	0001078	-2000018	·2425	0258781		0044047	- •15	$\cdot 0988194$	$\cdot 1811527$	$\cdot 240625$
05	0470041	.2704400	·245	0276125	- 0381453	0062833	10	0858411	$\cdot 1945400$	$\cdot 24375$
.00	0378604	.9955090	.2470	0294031			05	$\cdot 0737368$	$\cdot 2046893$	$\cdot 246875$
+.05	0296300	-2000000	.2595	.03125		0102539	•00	$\cdot 0624694$	$\cdot 2116818$	·25
+.10	0223140	-2878260	-2020	.02511051	0394174	- 0123344	+.05	0520175	$\cdot 2155489$	$\cdot 253125$
+.15	0159298	-2841201	.2575	.0371991			+.10	$\cdot 0423754$	$\cdot 2162728$	$\cdot 25625$
+.20	0.00000000000000000000000000000000000	.2770218	.26	.0302	-0399021	0100540	+.12	0335527	·2137861	$\cdot 259375$
+.25	0061172	·2663445	.2625	.0413991	-0400250		+.20	0255763	·2079674	$\cdot 2625$
+.30	0028223	·2518296	.265	.0435125		0211375	+.20	0184918	·1986347	·265625
+.35	0007352	·2331303	$\cdot 2675$	0457531	0308732		+.30	0123676	·1855345	·26875
+.40	•0	$\cdot 2097881$	$\cdot 27$	04805	- 0396375		+.30	0072998	1083255	•271875
+ • 45	·0008089	·1811980	·2725	0504031	0393033	- 0200304	+ .45	.0000057	1400008	·275
+.50	·0034197	$\cdot 1465558$	$\cdot 275$.0528125	0388672		+ 50	.0009001	.0967421	•278125
+ .55	·0081829	$\cdot 1047779$	$\cdot 2775$	0552781	0383256	0349072	+ .55	.0010353	-0607431	.28125
+.60	·0155840	$\cdot 0543720$	·28	.0578	0376750	0371490	1.60	0010333	1.009/0291	-284373
+ .65	$\cdot 0263161$	$\bar{1}.9932210$	$\cdot 2825$	$\cdot 0603781$	0369119	0393475	+.65	.0109971	1.0303570	200695
+.70	·0414078	<u>1</u> ·9181979	$\cdot 285$	$\cdot 0630125$	0360328	0414911	+.70	.0215976	1.8665804	.290025
+.75	·0624694	<u>1</u> ·8244269	$\cdot 2875$	$\cdot 0657031$	0350342	0435679	+.75	.0378604	1.7759080	-206975
+.80	$\cdot 0922180$	<u>1</u> ·7037082	·29	$\cdot 06845$	·- ·0339125	0455654	+.80	.0624694	1.6570600	-3
+.85	$\cdot 1357728$	1.5406314	$\cdot 2925$	$\cdot 0712531$	0326643	0474709	+.85	·1005057	1.4967424	.303125
+.90	·2046635	<u>1</u> ·3005493	$\cdot 295$	$\cdot 0741125$	0312859	0492710	+.90	·1634553	1.2596309	30625
+.95	·3357497	2.8728199	$\cdot 2975$	$\cdot 0770281$	0297740	0509521	+.95	·2881264	$\bar{2}.8351091$.309375
								_		

 $\rho = \cdot 4.$

 $\rho = \cdot 5.$

TABLE B—(continued).

 $\rho = \cdot 6.$

 $\rho = \cdot 5.$ $\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 8125919.$

log (1 -	$-\rho^2)^{\frac{3}{2}} = \overline{1} \cdot 8$	25919.			log (1	$(-\rho^2)^{\frac{3}{2}}$	$=\bar{1}.70927$	<i>'</i> 00.	
ϕ_2	φ3	Φ4	r	$\log \chi_1$	$\log \chi_2$.	φ1	ϕ_2	\$ 3	φ4
·0025830	0178043	+.0130733	95	$\cdot 7983074$	$\bar{2}$ ·4939170	·17875	.0006570	0129380	+.0113090
·0033008	- 0191498	+.0132346	- <i>∙9θ</i>	$\cdot 6450539$	$\bar{2}$ ·9327299	$\cdot 1825$	$\cdot 0011281$	0148103	+.0120455
$\cdot 0041064$	0205090	+.0132540	85	$\cdot 5542555$	$\bar{1}$ ·1837659	$\cdot 18625$	$\cdot 0017258$	0159569	+.0126231
·005	0218750	+.0131250	80	$\cdot 4890205$	$\bar{1}.3576828$	·19	.00245	0175375	+.0130246
0059814	0232410	+.0128423	75	$\cdot 4377890$	1.4891430	$\cdot 19375$	$\cdot 0033008$	 ∙0191498	+.0132346
0070508	0246002	+.0124015	70	$\cdot 3954124$	$\bar{1}.5935710$	$\cdot 1975$	$\cdot 0042781$	0207818	$+ \cdot 0132403$
$\cdot 0082080$	0259457	+.0117995	65	$\cdot 3591488$	$\bar{1}.6791805$	$\cdot 20125$	$\cdot 0053820$	- 0224218	+.0130306
$\cdot 0094531$	0272705	+.0110342	60	$\cdot 3273589$	$\bar{1}.7508604$	$\cdot 205$	$\cdot 0066125$	0240578	+.0125970
$\cdot 0107861$	0285679	+.0101042	55	$\cdot 2989895$	1.8117504	$\cdot 20875$	$\cdot 0079695$	0256780	+.0119330
$\cdot 0122070$	0298309	+.0090097	50	$\cdot 2733227$	$\bar{1}.8639801$	$\cdot 2125$	$\cdot 0094531$	0272705	+.0110342
$\cdot 0137158$	0310528	+.0077516	- 45	$\cdot 2498484$	$\bar{1}.9090541$	$\cdot 21625$	$\cdot 0110633$	0288235	+.0098985
$\cdot 0153125$	0322266	+.0063318	40	$\cdot 2281921$	$\bar{1}.9480680$	$\cdot 22$	·0128	0303250	+.0085260
$\cdot 0169971$		+.0047535	35	$\cdot 2080718$	$\bar{1}.9818379$	$\cdot 22375$	$\cdot 0146633$	0317633	+.0069189
$\cdot 0187695$	0344025	+.0030208	30	$\cdot 1892713$	·0109810	$\cdot 2275$.0166531	- ∙0331264	+.0050816
$\cdot 0206299$	0353909	+.0011389	25	$\cdot 1716222$	·0359679	$\cdot 23125$	·0187695	0344025	+.0030208
$\cdot 0225781$	0363037	- 0008860	20	$\cdot 1549924$	·0571577	$\cdot 235$	$\cdot 0210125$	0355797	+.0007451
$\cdot 0246143$	0371342	0030466	- •15	$\cdot 1392781$	0748218	$\cdot 23875$	$\cdot 0233820$	0366462	0017344
$\cdot 0267383$	0378754	0053345	10	$\cdot 1243983$	·0891598	$\cdot 2425$	$\cdot 0258781$	0375900	0044047
·0289502	0385204	0077405	05	·1102908	·1003106	$\cdot 24625$.0285008	0383994	0072503
$\cdot 03125$	0390625	0102539	·00	·0969100	·1083599	$\cdot 25$.03125	0390625	0102539
$\cdot 0336377$	0394947	0128634	+.05	·0842253	·1133434	$\cdot 25375$	0.0341258	0395674	0133957
$\cdot 0361133$	0398102	0155564	+.10	0.0722203	$\cdot 1152488$	$\cdot 2575$	-0371281	0399021	0166540
$\cdot 0386768$	0400021	0183193	+.15	.0608930	·1140143	$\cdot 26125$	0402570	0400550	0200045
$\cdot 0413281$	0400635	0211375	+.20	0.0502571	$\cdot 1095254$	$\cdot 265$	$\cdot 0435125$	0400141	0234213
$\cdot 0440674$	0399876	0239952	+.25	·0403433	·1016073	$\cdot 26875$	$\cdot 0468945$	0397675	0268757
$\cdot 0468945$	0397675	0268757	+30	$\cdot 0312032$	·0900151	$\cdot 2725$	0.0504031	0393033	0303374
·0498096	0393963	0297613	+.35	·0229135	·0744170	$\cdot 27625$	$\cdot 0540383$	0386098	0337735
$\cdot 0528125$	0388672	0326331	+.40	·0155840	0543720	·28	.0578	0376750	0371490
$\cdot 0559033$	0381733	0354711	+.45	0093675	0292945	·28375	$\cdot 0616883$	0364871	0404269
$\cdot 0590820$	0373077	0382544	+.50	0044774	<u>1</u> ·9984028	$\cdot 2875$	$\cdot 0657031$	0350342	0435679
$\cdot 0623486$	0362637	0409610	+.55	·0012127	1.9606388	·29125	$\cdot 0698445$	0333044	0465305
$\cdot 0657031$	0350342	0435679	+.60	•0	1.9145399	·295	0741125	0312859	0492710
$\cdot 0691455$	0336124	0460509	+.65	·0014639	1.8580230	·29875	0785070	0289669	
$\cdot 0726758$	0319916	0483849	+.70	0065529	1.7880012	·3025	0830281	0263353	0539003
$\cdot 0762939$	0301647	0505437	+.75	0167837	<u>1</u> .6996456	30625	0876758	0233795	- 0556908
·08	0281250	0525000	+.80	0347621	1.5848120	.31	09245	0200875	0570629
$\cdot 0837939$	0258656	0542255	+.85	0654746	1.4281563	·31375	0973508	0164474	0579619
$\cdot 0876758$	0233795	0556908	+.90	·1202910	1.1951114	·3175	·1023781	0120568	0583312
$\cdot 0916455$	0206600	0568656	+.95	·2358762	$\bar{2}$ ·7751326	32125	·1075320	0080757	

TABLE B. To assist the calculation of the Ordinates of the Correlation Frequency Curves from Expansion Formulae.

$\rho = \cdot 7.$
$\log (1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 5613553.$

 $\rho = \cdot 8.$ log $(1 - \rho^2)^{\frac{3}{2}} = \overline{1} \cdot 3344538.$

.

	1									
r	$\log \chi_1$	$\log \chi_2$	ϕ_1	ϕ_2	ϕ_3	φ₄	r	$\log \chi_1$	$\log \chi_2$	ϕ_1
95	·8731268	2.3332450	.166875	.0000002	0097459	1.0091651	.05	.0799501	<u>9</u> .0049049	.155
90	.7190257	2.7724818	.17125	.0000002	0101990	+.0001001		.9120091	2.5990000	100
85	-6273441	1.0239593	.175625	.0003611		+ 0094402	90	7955965	2.0009099	165
80	.5611883	1.1983367	.18	.0009	-0124950	+.0105001	- 00	-7200200	2.1001000	105
75	.5089957	1.3302774	184375	.0014111	-0151991	+.0110710	- 00	.0080410	2.9000700	175
70	•4656161	1.4352073	.18875	.0021045	-0170065	+.0120000	-70	·0004/97	1.10929008	.10
65	.4283019	1.5213417	.102195	.0021545	-0170005	+.0129113	10	-20112823	1.1983307	105
60	.3954124	1.5035710	193120	-0031302	01007919	+.0132130	00	·5229163	1.2849499	185
55	.3658096	1.6550266	-1975	0042701		+.0132403	00	·4890205	1.3576828	.19
50	.3300120	1.7079709	201875	00000780		+0129741	00	•4584391	1.4196788	.195
45	.2149759	1.7525704	20025	.0070508		+.0124015	20	·4304462	1.4/30/16	•2
10	.9019029	1.1000104	-210625	.0080955		+.0115131	45	$\cdot 4045223$	1.5193703	·205
- 20	-2912002	1.1932591	.215	.0105125		+.0103034	40	$\cdot 3802830$	1.5596756	·21
- 30	-2097007	1.8277312	•219375	0125018	0300788	+.0087711	- • 35	$\cdot 3574352$	<u>1</u> •5948094	·215
- 00	-2494790	1.8070140	•22375	•0146633	0317633	+.0069189	- • 30	$\cdot 3357497$	1.6253949	$\cdot 22$
- 20	.2302071	$\frac{1}{1}$.8833832	·228125	•0169971	- •0333454	+.0047535	- •25	·3150444	1.6519100	$\cdot 225$
20	·2119841	1.9053996	2325	0.0192031	0348065	+.0022856	- <i>·20</i>	$\cdot 2951711$	<u>l</u> ·6747215	·23
19	.1945188	$1 \cdot 9239392$	$\cdot 236875$	$\cdot 0221814$	0361275	0004699	- •15	$\cdot 2760084$	<u>1</u> .6941098	·235
10	.1777811	1.9392061	$\cdot 24125$	$\cdot 0250320$	0372898	0034943	10	$\cdot 2574549$	<u>1</u> .7102846	·24
05	·1616988	1.9513444	$\cdot 245625$	$\cdot 0280549$	- •0382744	- •0067646	-•05	$\cdot 2394256$	<u>1</u> ·7233964	·245
.00	·1462149	1.9604452	$\cdot 25$	$\cdot 03125$	0390625	0102539	•00	·2218487	<u>1</u> ·7335437	$\cdot 25$
+.05	$\cdot 1312858$	1.9665509	$\cdot 254375$	·0346174	- •0396353	-·0139313	+.05	$\cdot 2046635$	$\bar{1}.7407774$	$\cdot 255$
+.10	$\cdot 1168803$	<u>1</u> ·9696565	$\cdot 25875$	$\cdot 0381570$	0399739	0177618	+.10	$\cdot 1878190$	1.7451026	·26
+.15	$\cdot 1029796$	<u>1</u> ·9697088	$\cdot 263125$	·0418689	0400595	0217064	+.15	$\cdot 1712730$	$\bar{1}.7464775$	$\cdot 265$
+.20	$\cdot 0895777$	<u>1</u> ·9666028	$\cdot 2675$	$\cdot 0457531$	0398732	0257219	+.20	·1549924	Ī·7448109	·27
+.25	$\cdot 0766832$	<u>1</u> ·9601751	$\cdot 271875$	$\cdot 0498096$	- •0393963	0297613	+.25	·1389531	Ī·7399556	$\cdot 275$
+.30	$\cdot 0643213$	<u>1</u> ·9501937	$\cdot 27625$	$\cdot 0540383$	0386098	0337735	+.30	$\cdot 1231416$	$\bar{1}.7316990$	·28
+.35	$\cdot 0525383$	1.9363424	$\cdot 280625$	$\cdot 0584393$	0374949	0377031	+.35	$\cdot 1075577$	$\bar{1}.7197481$	$\cdot 285$
+•40	$\cdot 0414078$	<u>1</u> ·9181979	$\cdot 285$	$\cdot 0630125$	0360328	- •0414911	+.40	0.0922180	$\bar{1}.7037082$	·29
+.45	·0310401	1.8951960	$\cdot 289375$	$\cdot 0677580$	0342047	0450741	+.45	0.0771634	$\bar{1}.6830497$	·295
+.50	$\cdot 0215976$	1.8665804	$\cdot 29375$	$\cdot 0726758$	0319916	0483849	+.50	·0624694	1.6570600	·30
+•55	$\cdot 0133179$	$\bar{1}.8313240$	$\cdot 298125$	$\cdot 0777658$	0293748	0513521	+.55	.0482647	1.6247660	.305
+.60	$\cdot 0065529$	Ĩ·7880012	·3025	0.0830281	0263353	- 0539003	+.60	0347621	1.5848120	.31
+ .65	·0018354	Ī·7345749	$\cdot 306875$	0884627	0228545	0559500	+.65	.0223140	1.5352510	.315
+.70	•0	$\bar{1}.6680154$	$\cdot 31125$	0940695	0189134	0574179	+.70	0115163	1.4731726	.32
+.75	0024195	1.5835655	$\cdot 315625$	0998486	0144932	0582164	+.75	0034197	1.3939808	.325
+ • 80	·0115163	1.4731726	.32	.1058	- 0095750	0582540	1.80	.0	1.2808462	.33
+.85	0320384	1.3216122	.324375	1119236	0041400	0574351	1.85	.0053679	1.1458629	.335
+.90	.0750398	1.0944747	-32875	.1182105	±.0018306		1.00	.0906200	9.0990051	.34
+.95	.1767574	2.6814297	-333125	.1246877	$\pm .0083557$	0528252	+.05	.1075577	5.5960450	-345
		= 5011207	000120	1270011	+.0000001	- 1020203	+-90	-10/00//	2-9209490	-949
			1							

Ň

TABLE B—(continued).

 $\rho = \cdot 9.$

$\rho = \cdot 8.$ log(1)213 1.3344538

log (1	$-\rho^2)^{\frac{3}{2}} = \overline{1} \cdot 3$	344538.	$\log (1 - \rho^2)^{\frac{13}{2}} = \overline{2} \cdot 9181304.$						
ϕ_2	ϕ_3	φ1	r	$\log \chi_1$	$\log \chi_2$	φ1	φ2	ϕ_3	φ4
.0006125	0056047	+.0044070	95	1.1344648	<u>3</u> .6665553	$\cdot 143125$	$\cdot 0024939$	0038913	+.0010198
·0002	0067750	+.0060060	- •90	$\cdot 9789250$	$2 \cdot 1065114$	·14875	$\cdot 0014445$	0045010	+.0025068
·0000125	0081703	+.0075898	85	$\cdot 8857364$	$\bar{2}$ ·3587425	$\cdot 154375$	$\cdot 0006799$	0054756	+.0042099
$\cdot 00005$	0097625	+.0090871	80	·8180004	$\bar{2}.5339099$	·16	$\cdot 0002$	0067750	+.0060060
$\cdot 0003125$	- 0115234	+.0104333	75	$\cdot 7641490$	$\bar{2}$.6666800	$\cdot 165625$	$\cdot 0000049$	0083591	+.0077831
·0008	0134250	+.0115710	70	$\cdot 7190257$	2.7724818	·17125	$\cdot 0000945$	0101880	+.0094402
.0015125	– ·0154391	+.0124493	65	$\cdot 6798765$	2.8595337	·176875	$\cdot 0004689$	0122216	+.0108873
·00245	0175375	+.0130246	60	$\cdot 6450539$	2.9327299	•1825	•0011281	0148103	+.0120455
·0036125	0196922	+.0132598	- • 55	$\cdot 6134923$	2.9952161	$\cdot 188125$	$\cdot 0020721$	0167425	+.0128469
.005	0218750	+.0131250	50	$\cdot 5844606$	<u>1</u> ·0491282	·19375	$\cdot 0033008$	-·0191498	+.0132346
·0066125	0240578	+.0125970	45	$\cdot 5574342$	1.0959782	$\cdot 199375$	$\cdot 0048143$	0216015	+.0131629
$\cdot 00845$	- ·0262125	+.0116596	- •40	$\cdot 5320225$	<u>1</u> ·1368698	$\cdot 205$	$\cdot 0066125$	0240578	+.0125970
·0105125	0283109	+.0103034	35	$\cdot 5079254$	<u>1</u> ·1726281	$\cdot 210625$	$\cdot 0086955$	0264785	+.0115131
·0128	0303250	+.0085260	30	$\cdot 4849062$	$1 \cdot 2038806$	$\cdot 21625$	$\cdot 0110633$	0288235	+.0098985
·0153125	0322266	+.0063318	25	$\cdot 4627737$	$1 \cdot 2311092$	$\cdot 221875$	$\cdot 0137158$	0310528	+.0077516
·01805	0339875	+ 0037321	20	$\cdot 4413696$	<u>l</u> ·2546862	$\cdot 2275$	$\cdot 0166531$	0331264	+.0050816
$\cdot 0210125$	0355797	+.0007451	- •15	$\cdot 4205607$	$1 \cdot 2748976$	$\cdot 233125$	$\cdot 0198752$	0350042	+.0019092
$\cdot 0242$	0369750	0026040	10	·4002321	$1 \cdot 2919599$	$\cdot 23875$	$\cdot 0233820$	0366462	0017344
$\cdot 0276125$	0381453	0062833	05	·3802830	<u>1</u> ·3060315	$\cdot 244375$	$\cdot 0271736$	0380123	0058066
.03125	0390625	0102539	·00	·3606232	1.3172203	$\cdot 25$	$\cdot 03125$	0390625	0102539
$\cdot 0351125$	0396984	0144700	+.05	·3411701	1.3255880	$\cdot 255625$.0356111	0397568	0150118
$\cdot 0392$	0400250	0188790	+.10	·3218470	1.3311524	$\cdot 26125$	$\cdot 0402570$	0400550	0200045
$\cdot 0435125$	0400141	- •0234213	+•15	$\cdot 3025809$	<u>1</u> ·3338874	$\cdot 266875$	$\cdot 0451877$	0399172	0251457
.04805	0396375	0280304	+.20	·2833014	<u>1</u> ·3337203	$\cdot 2725$	$\cdot 0504031$	0393033	0303374
$\cdot 0528125$	0388672	- 0326331	+.25	$\cdot 2639393$	1.3305264	$\cdot 278125$	$\cdot 0559033$	0381733	0354711
.0578	0376750	0371490	+.30	$\cdot 2444254$	1.3241210	$\cdot 28375$	$\cdot 0616883$	0364871	0404269
$\cdot 0630125$	0360328	- 0414911	+.35	$\cdot 2246902$	$1 \cdot 3142457$	$\cdot 289375$	$\cdot 0677580$	0342047	0450741
.06845	0339125	0455654	+.40	$\cdot 2046635$	1.3005493	$\cdot 295$	0.0741125	0312859	0492710
$\cdot 0741125$	0312859	0492710	+.45	$\cdot 1842748$	$1 \cdot 2825579$	·300625	0.0807518	0276909	0528645
·08	0281250	0525000	+.50	$\cdot 1634553$	1.2596309	·30625	0.0876758	0233795	0556908
$\cdot 0861125$	0244016	0551378	+.55	$\cdot 1421425$	$1 \cdot 2308910$	$\cdot 311875$	·0948846	-·0183117	0575750
$\cdot 09245$	0200875	0570629	+.60	·1202910	1.1951114	•3175	$\cdot 1023781$	0120568	0583312
$\cdot 0990125$	- 0151547	0581467	+.65	$\cdot 0978953$	$1 \cdot 1505243$	$\cdot 323125$	·1101564	0057467	0577622
$\cdot 1058$	0095750	0582540	+.70	$\cdot 0750398$	1.0944747	$\cdot 32875$	·1182195	+.0018306	0556601
$\cdot 1128125$	0033203	0572424	+.75	·0520175	<u>1</u> .0227457	$\cdot 334375$	$\cdot 1265674$	+.0103245	0518057
$\cdot 12005$	+.0036375	0549629	+.80	·0296300	2.9280951	•34	$\cdot 1352$	+.0197750	0459690
$\cdot 1275125$	+.0113266	0512594	+.85	·0100596	2.7965809	$\cdot 345625$	·1441174	+.0302222	0379088
$\cdot 1352$	+.0197750	0459690	+.90	·0	$\bar{2}.5959739$	$\cdot 35125$	$\cdot 1533195$	+.0417061	0273728
$\cdot 1431125$	+.0290109	0389219	+.95	$\cdot 0274889$	$2 \cdot 2200433$	$\cdot 356875$	·1628064	+.0542668	0140979
						1			

27-2

1	1	· · · · · · · · · · · · · · · · · · ·			
n	ρ=0	$\rho = \cdot 1$	$\rho = \cdot 2$	$\rho = \cdot 3$	$\rho = \cdot 4$
				-	
3		$\cdot 1116225$	∫ ·2266490	∫ ·3490329	§ •4840501
	(.0707107	(.0709720	(.0717802	0732142	0754314
4		·1478819	·3011028	j ·4659475	j ∙6510044
	(.0866025	(.0870223	(.0883242	(.0906481	₹ 0942760
5		·1778638	·3643600	{ ·5634956	§ •7915154
	(.100000)	(•1005663	(.1023258	(.1054792	(.1104330
6	1110094	2038/11	·4165411	6485234	§ ·9145610
	(1118034	(.1120038	(.1140829	(.1185985	(.1247759
7	1994745	1999001	1959690	1246924	1.0250662
	(1224745	(.9489700	(.5092017	(.1304802	(.1377861
8	1.1399876	1229959	1261469	1414126	1407650
	(1022070	(.9678441	(.5497522	(.9594999	(1497000
9	1.1414214	1494651	1457109	1515011	1600169
	(0	(.2861133	.5865316	(.0185492	(1.2069549
10	1.1500000	1511433	1547090	1611481	1713870
77		.3033102	6220953	(.9750815	(1.3800061
11	1.1581139	1593510	1632105	1701841	1812835
10	1 0	· ·3196014	.6557863	(1.0286451	(1.4670090
14	1.1658312	·1671572	·1712949	1787749	1906890
72	\$ 0	(·3351148	· ·6878684	1.0796486	(1.5411920
10	1.1732051	·1746157	·1790180	·1869796	·1996684
74	5 0	(·3499533	(.7185489	1.1284203	(1.6121199
11	1.1802776	l 1817701	↓ ·1864240	·1948454	·2082735
15	} 0	∫ ·3641907	j ∙7479946	§1·1752248	1 6801759
10	1.1870829	1.1886516		·2024107	∂ ·2165466
16		∫ ·3779001	§ •7763419	J1·2202786	(1.745675]
_	(+1936492	(.1952922	0.2004222	2097070	<i>\</i> ·2245228
17		.3911338	{ ·8037041	$1 \cdot 2637617$	1.8088795
	(-2000000	(2017147	(•2070688	(•2167611	(•2322314
18	1.9061559	•4039379	•8301762	1.3052186	{1.8700099
		(.4162514	(.2135090	(.2234913	(.2396972
19	1.2121320	.9130898	.9107696	1.3403992	1.9292543
	1 0	(.4984077	((1.2861020	(1.0967744)
20	1.2179449	2198606	2258433	-9366781	.9530898
07	1 0	4401360	.9050057	(1.4247026	(2.033020)
21	1.2236068	·2255854	·2317651	•2429578	2608369
22	5 0	4515616	·9286218	1.4622122	2.0971840
22	<i>\</i> ∙2291288	∂ •2311687	·2375398	$\cdot 2490805$	·2675179
23	50	√ ·4627064	9516565	(1.4987939	(2.1503024
~0	₹ 1.2345208	<i>\</i> ∙2366202	<i>{</i> •2431779	·2550572	·2740380
24	∫ • 0	∫ •4735903	∫ ·9741508	(1.5345139	2.2021616
	(.2397916	<i>\</i> ∙2419491	·2486887	<i>}</i> ∙2608980	{ ·2804084
25		{ •4842308	} ·9961404	1.5694295	(2.2528457)
	(*2449490	(•2471633	(.2540801	·2666117	·2866387
50	1.250000	05995857	1.4409868	2.2751863	3.2760792
	1.200000	(3533454	(.3637983	(.3827476	(•4130572
100	1.4074027	1 .2221048	12.0006127	3.2571060	4.6973149
	()	(.0023813 (2.0150254	(.91/0988	(.5453562	(.5896685
400	3.9987492	1.0087684	1.0400794	1.0069401	9.4914497
	1 0001104	(10001004	(1.0400194	(1.0909491	(1.19/081/
		· · · · · · · · · · · · · · · · · · ·			

TABLE C.Position of Origin and Abscissal Unit in terms of Standard Deviation.The first Number gives the Position of the Origin, the second the Abscissal Unit.

n	ρ=•5	$\rho = \cdot 6$	$\rho = \cdot 7$	$\rho = \cdot 8$	$ ho = \cdot 9$
2	∫ ·6397035	∫ ·8298069	∫ 1·0821815	j 1·4670408	§ 2·2572614
0	{ ·0787233	} ·0836496	0914099	<i>\</i> ·1051565	\·1375647
4	y •8697069	$1 \cdot 1461037$	1.5308211	$2 \cdot 1592865$	3.6084918
-	<i>\</i> ∙0997391	(.1080827	$(\cdot 1216223)$	$(\cdot 1467433$	$(\cdot 2112748)$
5	{ 1.0657049	1.4204694	1.9303003	2.8019830	4.9700548
-	(.1179621	(1296152	(.1488972	(.1857778	(•2860585
6	1.2384801	1.0040016	2.2906234	3.3941363	6.2758785
	(1.342232)	(1489700	(9.6109969	(2.0206570)	(.2018080
7	1400074	1666379	1064454	.2553750	.4253043
	(1.5367713)	1000372	(2.9218412)	(4.4441908	8.6363301
8	1626318	1829343	2174712	2863637	•4881142
	1.6688524	2.2769195	3.2029089	4.9133944	9.6932562
9	·1753174	·1981116	·2370570	·3152309	·5464383
10	1.7923354	£ 4529927	§ 3.4658872	5.3522889	10.6791012
10	1872248	<i>\</i> ∙2123532) ·2554247	<i>\</i> ∙3422692	} .6008602
17	j 1·9086231	§ 2 [:] 6188112	§ 3·7134918	§ 5·7651162	j11·6030258
11	↓ ·1984751	·2258005	·2727512	<i>\</i> ·3677294	1 .6518808
12	2.0191978	$\{2.7758616\}$	3.9478808	6.1553948	12.4732325
	(.2092046	$(\cdot 2385646)$	(•2891787	(.3918213	(.6999496
13	2.1236943	2.9253194	4.1707880	0.5260261	13.2967143
	(.2193027		(•3048220	6.9704090	(1404499
14	2.2238984	0693900	3107770	1265652	14.0795002
	(2.3200595	3.2050605	4.5875494	(7.2175324)	14.8260439
15	-2385095	2735636	-3341195	4574817	8299826
	(2.4125823)	3.3367521	4.7835297	7.5420659	15.5412908
16	2475526	•2843315	•3479156	4775684	•8695312
1~	2.5018385	3.4637416	4.9723756	7.8544126	(16-2273352
17	·2562879	·2947261	3612200	·4969104	€ •9074724
18	j 2·5881420	J 3·5864801	j 5·1547751	§ 8·1557645	j16·8882836
10	} ·2647443	3047823	<i>\</i> ∙3740794	<i>\</i> ∙5155798	·9440329
19	2.6717601	3.7053440	§ 5·3313166	§ 8·4471433	17.5262030
10	0.2729462	· 3145295	(.3865338	0.5336387	(.9793257
20	2.7529232	3.8206677	5.5025071	8.7294265	18.1432348
	(.2809148	0.024196		(.5511403	(1.01.34085
21	2.9906606	0.9341803	0.0001202	9.0055775	1.0465509
	(2.0086578	(4.0418750	1 5.8305400	(0.9606694	(10.3216440)
22	29080378	3421658	4217904	-5846516	1.0786891
	(2.9835558	4.1481734	5.9881082	9.5288659	19.8860017
23	3035949	3509062	4329287	·6007373	1.1099306
04	3.0566623	4.2518695	6.1417876	9.7815042	(20.4355030
Z4	3107942	·3594371	4437967	6164198	1.1403534
25	§ 3·1280980	§ 4:3532587	§ 6·2918434	10.0281639	\$20.9711894
20	3178324	3677825) ·4544124	} ·6317351	1.1700149
50	§ 4·5677713	} 6·3911451	§ 9·2990780	14.9462808	31.5884211
	4603212	(.5361355	0.6677547	<i>\</i> •9376711	1.7584334
100	6.5628599	9.2058648	13.4374982	{21·6797456	46.0257637
	6587893	(.7696570	·9623213	(1.3574820	(2.5594824
400	13.2812941	18.6652227	27.3067557	44.1732879	94'0076645
	(1.3293798	(1.9900994	(1.901/320	(2.1020803	(5-2212509
1	1	1	1	i .	1

TABLE C-(continued).