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Transposed Conditionals, Shrinkage, and Direct
and Indirect Unbiasedness

Stephen Senn

Abstract: Unbiasedness as conventionally understood is not a
necessary property of good inferences. Such unbiasedness is “di-
rect”—it guarantees that, on average, an estimate equals the thing it
is estimating (the parameter). Strange as it may seem, this does not
mean that the parameter is on average equal to its estimate. This
would require the very different property of inverse unbiasedness.
When this phenomenon is understood, shrinkage of results can be
seen to be a necessary fact of life.

(Epidemiology 2008;19: 652–654)

John Ioannidis1 is to be congratulated on promoting an
awareness of the fallibility of research findings. I agree

with his conclusions that true associations are inflated (on
average) but I have a somewhat different view as to why,
which I shall try explain.

In my opinion much of the confusion regarding the
reliability of research findings is due to basic misunderstand-
ings of statistics and in particular of the weasel-word “bias.”
A trivial fact of logic that applies to syllogisms and one that,
by extension, applies to probabilities and other inferential
statements, is that you cannot transpose conditionals. Thus it
is true that a minority of women are suffering from breast
cancer but it is false that a minority of breast cancer sufferers
are women. Many who are perfectly aware of this logic when
they are required to think about it, nevertheless completely
overlook its crucial relevance to statistical inference.

Consider for example a randomized clinical trial in
which true diastolic blood pressure, �, at baseline is measured
with error � so that X � � � � is the observed blood pressure.
Suppose we knew that the true mean difference, �, between
patients (in mm Hg) was �. What does this tell us about the
observed difference, D, in these patients? If measurement is
unbiased and independent of �, so that errors are randomly
above or below the true value with an expected difference of

zero, then the answer is that we expect the observed differ-
ence to be � so that E �D  � � �� � �.

Now, however, suppose that we were to reverse the
question and ask, given that the observed difference D (in
mm Hg) is d, what do we expect the true difference to be? It
turns out that the answer is less than d, so that E ��  D � d�
� d. This can easily be explained in terms of regression
coefficients. The regression of observed on true is the covari-
ance of true and observed, ��X, divided by the variance of
true, ��

2. Under the model, these 2 values are the same and so
��X � ��

2. Hence the regression is 1.0. On the other hand if
we regress true on observed we take the same covariance but
divide by the variance of observed, �X

2 , which, due to mea-
surement error, is greater than the variance of true; thus
�X

2 � ��
2 and therefore �X

2 � ��X. Hence we have a regression
to the mean.

I note, by the by, that failure to understand this distinc-
tion has led to incorrect claims that, when covariates are
measured with error, analysis of covariance in randomized
clinical trials is biased due to attenuation of the regression
effect between outcome and covariate. However, this over-
looks the other regression (of true baseline difference on
observed baseline difference), and it turns out that the two
cancel.2

Now consider a large collection of true treatment ef-
fects; it may be helpful to consider the context of a microar-
ray as an example. These effects are measured with perfectly
unbiased “studies,” which are, of necessity, of limited preci-
sion. The variance of the estimates will exceed the variance
of the true effects. It thus follows that even if all the
experiments are perfectly unbiased—so that, on average,
conditional on a given true treatment effect the observed
effect, is equal to the effect it is estimating—the reverse does
not hold. We can expect that any true effect will be closer to
the mean of all effects than is the observed effect.

Note that this applies even if all the scientists involved are
experimental saints who measure everything in a perfectly un-
biased way. The point is that unbiasedness is a property that
applies to the “forward expectation” of observed effects given
true effects, but not therefore to the “backward expectation” of
true effects given observed effects. To assume that the one
implies the other is to make a comparable error of logic to
assuming that because Greeks are with 100% probability Euro-
pean, Europeans are with 100% probability Greek.
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Direct expectation is what is relevant to what one might
call direct bias (or unbiasedness as the case may be) and
inverse expectation is relevant to what might be called in-
verse bias (or unbiasedness). Consideration of the latter is
natural to Bayesians but maybe frequentists would do well to
think about it more.

I do not deny that some of the features (an obsession
with significance, selective reporting, conflicts of interest)
that Ioannidis discusses may have some relevance to the
phenomenon to which he draws attention. Nonetheless, I do
not believe that they are necessary. “Regression to the truth,”3

is to be expected anyway.
In particular, I think that the role of statistical signifi-

cance and early stopping as a cause of this phenomenon is
overstressed, as I shall now try demonstrate using the results
of a simple simulation.

Consider a case where we have a large population of
treatments effects � with variance �2 (which, without loss of
generality, we may assume equal to 1) and mean E��� � 0.
Now suppose that we have some basic experimental unit,
which might be patients measured more than once (as, say, in
a cross-over trial) or centers with 2 patients, 1 on treatment
and control (as in a parallel group trial)—each of which is
capable of providing an estimate with variance �2. We can
consider such a basic experimental unit as being the mini-
mum that would provide an estimate of any interest. A
Bayesian interpretation of the set-up I am describing is that
the prior information about a given treatment effect, as
incorporated in �2, is about equivalent to what an absolutely
minimal experiment would show. Different amounts of prior
information could be considered appropriate in practice and
different minimal experiments could be envisaged, but this
set-up will be sufficient to illustrate the relevant points.

Now suppose, however, that we have carried out an
experiment that constitutes an n-fold replication of the basic
unit. For example we might have n centers. Bayesian theory
suggests that any unbiased estimate, �̂, of a given effect � should
be shrunk by a factor n/(n � 1) to produce a shrunk estimate

�̂s � �̂
n

n 	 1
. Although �̂s is not unbiased in the classic forward

sense, because E��̂s � � ��� 
 ��, it is unbiased in the Bayesian
backward sense because E�� �̂s � �̂s

�� � ��̂s
�.

Now suppose we run an experimental trial in which we
study n1 units in a first pilot stage and are prepared in
principle to study n2 units in a second stage, but that we will
stop the study if the first-stage results are “interesting.”
Inference will be based on n1 results for a stopped study and
on n � n1 � n2 for a completed study.

Table 1 shows the results of 100,000 simulations for
such a scheme with n1 � 5, n2 � 10 and stopping based on
conventional one-sided significance at the 5% level after
stage 1. Note that the figure labeled “Both” is, in the case of
a stopped study, hypothetical, since the data from the second
n2 patients would not be obtained. The standard errors of the
means from this table are all less than 0.004. (All these
means, by the way, can be calculated theoretically, but the
simulation has some attraction as a demonstration.)

From the raw means it can be seen that, averaged over
both types of trials, the sequential design is indeed biased.
However it is also obviously true that if we choose to conduct
a pilot study without possibility of continuing, then for all
such pilot studies where the result is significant the “bias” is
the same as for a sequential trial. Thus the sequential trial has
the same bias as a significant pilot study run in a nonsequen-
tial manner. Similarly, we could in principle examine any
nonsequential trial in n � n1 � n2 patients to see whether it
would have stopped had it been run sequentially. Obviously
again, trivially, the complete study gives the same result as
the sequential study.

It thus follows that a sequentially run trial can always
be matched with results from a nonsequentially run trial that
would show exactly the same degree of bias provided that the
results and their precision are available. Under such circum-
stances the fact that the trial is sequential is irrelevant to any
judgment of bias.

Now consider the shrunk means in Table 1 produced

using the shrinkage factors �pilot � n1/�n1	 1	 � 5⁄6 and �complete �
n⁄�n 	 1	 � 15⁄16. It can now be seen that, whether stopped or
not, the true treatment effect is correctly estimated on
average.

Of course all of this will be perfectly obvious to
Bayesians. I am not, however, suggesting that we use Bayes-
ian statistics for reporting trials. This would get us in a
terrible mess. (For the same reason, adjusting P-values for

TABLE 1. Mean Treatment Effects: True Values, Raw Means, and Shrunk Means, Based on
100,000 Simulations

Type of
Study Number

Raw Mean Shrunk Mean

True Pilot Both Sequential Pilot Both Sequential

Stopped 25,228 1.16 1.38 1.23 1.38 1.15 1.15 1.15

Complete 74,772 –0.39 –0.46 –0.42 –0.42 –0.39 –0.39 –0.39

Both 100,000 0.00 0.00 0.00 0.036 0.00 0.00 0.00

See text for further details.
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multiplicity is also undesirable.) However, it does suggest
that we should use Bayesian eyeglasses for looking at trials—
or, if one prefers, we should view all results with skepticism.

Basically, this point of view suggests that the problem
with sequential trials is the reverse coin of their advantage. They
are cheaper because they are on average, smaller, and by the
same token they collect less information and therefore require
stronger shrinkage—but none of this is due to the fact that they
are sequential. Thus, while I applaud Ioannidis’s determination
to make us recognize the fallibility of research findings, I do not
follow him in blaming it on the cult of significance—lamentable
though that cult may be. Nor do I regard it as being necessary to
seek the explanation in the less-than-perfect behavior of scien-
tists. Random variation means that results are less-than-perfectly
reliable, and this simple fact is enough to suggest a degree of
skepticism when interpreting anything.
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