
1

A dummy first page

If you want to print 2-up, run of from page 2 (the next page).

This will get the book page number in the correct corner.



A point-free and point-sensitive analysis

of

the patch assembly

Rosemary A. Sexton

Mathematical Foundations Group
The University
Manchester

This is a version of the PhD Thesis Submitted to the then Victoria University of
Manchester in September 2003.

This version doesn’t use the silly spacing and formatting required by the University
regulations.



Contents

1 Introduction 3

2 Point-sensitive background 7
2.1 Basic separation properties, sobriety and regularity . . . . . . . . . . . . 7
2.2 Saturation and compact saturated sets . . . . . . . . . . . . . . . . . . . 10
2.3 The front topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Point-free background 17
3.1 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 The point space of a frame . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 The Hofmann-Mislove Theorem . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 The frame separation properties regular and fit . . . . . . . . . . . . . . 27

4 The point-sensitive patch construction 31
4.1 Packed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 The point-sensitive patch construction . . . . . . . . . . . . . . . . . . . 32
4.3 The point-sensitive patch is not always sober . . . . . . . . . . . . . . . . 33
4.4 Functorial properties of the point-sensitive patch construction . . . . . . 35

5 The full assembly 39
5.1 Nuclei and related gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 The u, v and w nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Spatially induced nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 The Cantor-Bendixson example . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Admissible filters and fitted nuclei . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Nuclei associated with open filters . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Block structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Properties of the full assembly 65
6.1 The full assembly is a frame . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 N is a functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 The fundamental triangle of a space . . . . . . . . . . . . . . . . . . . . . 70
6.4 The point space of the full assembly . . . . . . . . . . . . . . . . . . . . . 73

7 The patch assembly 77
7.1 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Functorality matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1



2 CONTENTS

7.3 The full patch assembly diagram . . . . . . . . . . . . . . . . . . . . . . 85

8 A hierarchy of separation properties 87
8.1 Patch triviality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Stratified tidiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3 Stratified regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.4 The spatial case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.5 Stacked spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.6 Vietoris points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9 The point space of the patch assembly 103
9.1 The basic information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 Two spoilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.3 The ‘ordinary’ points of the patch assembly . . . . . . . . . . . . . . . . 105
9.4 The wild points of the patch assembly . . . . . . . . . . . . . . . . . . . 107

10 Examples 111
10.1 The cofinite and cocountable topologies . . . . . . . . . . . . . . . . . . . 111
10.2 A subregular topology on the reals . . . . . . . . . . . . . . . . . . . . . 122
10.3 The maximal compact topology . . . . . . . . . . . . . . . . . . . . . . . 122
10.4 A glueing construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11 The boss topology on a tree 129
11.1 Trees and boss topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
11.2 Stacking properties of a boss space . . . . . . . . . . . . . . . . . . . . . 134
11.3 Full splitting trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
11.4 Some wide trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.5 The top down tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Chapter 1

Introduction

Point set topology has a history of somewhat over 100 years, and has been used in many
different areas of mathematics as well as in other applications. However, many of these
uses are in the broad area of continuous mathematics, as opposed to discrete mathematics.
In consequence, the topological spaces which have received the most attention are T2

(Hausdorff), whereas many of the spaces of interest to theoretical computer scientists
are usually not so well separated. Here we will study spaces which may have weaker
separation properties.

Each topological space carries a specialisation order which, in general, is a pre-order.
The space is T0 precisely when this comparison is a partial order, and is T1 when it
is equality. The pre-order does not determine the topology, although there are some
canonically associated examples.

In the standard way we have the short hierarchy

T0 T1 T2 T3

of separation properties, where T3 is the property T2 strengthened by the addition of
regularity. These are the bread and butter of point set topology. Here we will take a look
at what can happen in between these separation properties.

This outlines an argument for a study of the category Top of topological spaces and
continuous maps, with an emphasis on those spaces with separation properties lying
between T0 and T3. However, there is another observation which should be taken into
account.

A topological space is a set of points structured by the carried topology. Often in ap-
plications some of these points can be viewed as concrete entities, but others are idealised
and are there merely to complete the structure. Furthermore, often the individual points
are not of great interest, as we are concerned more with the way certain collections of
points (the open sets) interact. Given this, it makes sense to concentrate on the algebra
of open sets rather than the space of points. In doing this, we move from the environment
of point-sensitive topology to that of point-free topology. This idea has been pursued
in mathematics for almost 30 years, and is quite common within computer science. A
somewhat eccentric account is given in [18]; a more balanced view can be found in [9].
Although the latter was written purely from a mathematical perspective, it has had a
great deal of influence on the development of this area of theoretical computer science.

Just as the category Top is the appropriate environment for point-sensitive topology,
there is a category Frm which is the appropriate environment for point-free topology.
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4 CHAPTER 1. INTRODUCTION

These two categories are intimately connected but are by no means equivalent. The
category Frm is much more flexible than Top and contains many more facilities, some of
which couldn’t be imagined by staying within Top. Much of my research exploits this
greater flexibility.

We will develop the interplay between Top and Frm. In particular, we often use a
point-free analysis, done within Frm, to obtain point-sensitive information about Top.
This is a fruitful approach since, as mentioned earlier, the category Frm provides many
facilities not easily obtainable within Top.

From an historical perspective the starting point for this research was the paper by
Escardó [4] on stably locally compact spaces. These spaces often appear in connection
with domains, as do the more general locally compact spaces. These spaces can be studied
from both a point-sensitive and a point-free angle; the difference is more a matter of
taste than content. However, there is one construction that is used quite a lot for these
and more general spaces, and which seems to be quite firmly set in the point-sensitive
environment. This is the associated patch space of a space. Escardó showed that for
this restricted class of spaces the patch topology can be produced in a purely point-free
fashion and, furthermore, this construction has some nice functorial properties.

An analysis of part of [4] was carried out in [13] as an MSc project. It became clear
that Escardó’s results depend quite heavily on the coincidence of two techniques: the
use of Scott continuous nuclei, and the use of certain fitted nuclei. In general, these are
quite separate gadgets, but for the setting in which Escardó worked they are intimately
connected and his results depend on this connection.

On the positive side, it also became clear that a version of the patch construction
could be developed in a purely point-free fashion and which could be used throughout
Frm, not just on a restricted family of objects. However, this raised more questions than
answers, and it was evident that a deeper analysis was needed. This is what I have
attempted.

It is not useful to give the chronology of the various results obtained (for, as often
happens, they came in quite a random order). However, a quick look at the contents
of each chapter will help. In the survey some technical words will be used without
explanation. Of course, these will be defined at the appropriate point in the body of the
thesis.

Chapter 2 gathers together the background point-sensitive material, that is the
required standard results from point set topology concerning the category Top. There is
nothing new in this chapter, although perhaps Corollary 2.3.6 has some novelty value.

Chapter 3 organises the required background point-free material concerning the
category Frm. Again there isn’t much that is new here, but the account of the Hofmann-
Mislove result (in Section 3.4) contains information that doesn’t seem to be as well known
as it should be.

As indicated above, many areas of mathematics use only T2 spaces, but not all spaces
have this property. Thus there is a question of how a ‘defective’ space S may be ‘corrected’
to obtain a T2 space. The topic of Chapter 4, the point-sensitive patch construction,
can be viewed as an attempted ‘correction’. In each T2 space each compact saturated
set is closed. The point-sensitive patch construction attempts to achieve this by simply
declaring that each compact saturated set should be closed. This chapter gathers together
the relevant properties of the construction. There are some new results here, or at least
results which do not seem to be well known. In particular, we isolate the classes of packed
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and tightly packed spaces.
The category Frm offers more facilities than the category Top. One of these is the full

assembly of a frame. (This exists for a topology but, in general, is not itself a topology.)
The assembly NA of a frame A is a gadget which has a great influence on the structure
of A. It is a vehicle which enables many calculations to be carried out. Chapter 5
deals with nuclei, the building blocks of the assembly. Much of the material is standard,
but there are some new aspects. In particular we show how each open filter on a frame
induces a chain of elements ascending through the frame. The length of such chains form
a measure of the complexity of the frame. We also take a look at the block structure of
an assembly.

Chapter 6 continues the analysis of the full assembly. The previous chapter concen-
trated on the elementary algebraic properties whereas this chapter concentrates on the
functorial properties. In particular, although not entirely new, the results of Sections 6.3
and 6.4 provide useful information.

Chapter 7 is where the thesis begins to break new ground. In Chapter 4 we attached
to each space S a patch space pS and a frame embedding

OS ⊂ - OpS

between the topologies. In Chapters 5 and 6 we attached to each frame A a frame NA,
its assembly, and a frame embedding

A ⊂ - NA

(up to isomorphism). We are now in a position to mimic the point-sensitive construction

S - pS

to attach to each frame A a patch assembly PA which sits between A and its full assembly
NA.

A - PA ⊂ - NA

With a bit of hand waving it could be argued that the construction PA on a frame A
is the point-free analogue of the point-sensitive construction pS on a space S. However,
as we will see, this is not entirely correct. This chapter sets up all the basic properties
of P (·). By the end of the chapter we have attached to each space S a surjective frame
morphism

POS
πS - OpS

from the patch assembly of its topology OS to the topology of its patch space pS. The
obvious inclination is to think that πS is an isomorphism. And it is for nice spaces, but
not in general. Thus we need to investigate further.

We have attached to each frame A an embedding

A - PA

into its patch assembly. When is this an isomorphism? A standard result shows that if A
is regular (as for the topology of a T3 space) then we have an isomorphism. A refinement
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of this shows that we still have an isomorphism when A is the topology of a T2 space.
Chapter 8 contains a thorough analysis of when this embedding is an isomorphism.
Much of the analysis is done in a point-free setting, but for the purposes of this review
let’s consider only the point-sensitive results. Eventually we show that for the topology
A = OS of a T0 space S the embedding is an isomorphism precisely when S is

T1 + sober + packed + stacked

where the packed property is discussed in Chapter 4 and the stacked property is intro-
duced in this chapter. (It turns out that T1 and sober are both implied by the other
two properties.) We find there are two interlacing hierarchies of separation properties
descending from T3 down to this composite property. These are

α-regular α-tidy

where α is an ordinal. For a T0 space we have

0-regular = T3 1-tidy = T2

and
α-tidy =⇒ α-regular =⇒ (α+ 1)-tidy

for each ordinal α. This measure α is related to the length of certain chains introduced
in Chapter 5. Later we show, by example, that this hierarchy does not collapse. Finally,
in this chapter, we observe an unexpected connection with the Vietoris points of a space.

In Chapter 7 we saw that for each sober space S there is a surjective frame morphism

POS
πS - OpS

connecting the two patch constructions. In general this need not be an isomorphism.
What is the connection between pS and the point space of POS? More generally, for
a frame A with point space S, what is the connection between pS and the point space
pt(PA) of the patch assembly? We find there is a canonical embedding

ppt(A) - pt(PA)

which, under certain reasonably nice circumstances, is a homeomorphism. However, for
some frames A (even spatial frames) the assembly PA can have ‘wild’ points, that is points
that are not visible in ptA. Chapter 9 begins an analysis of these points. However, as
often happens, our results seem to generate more questions than answers.

Much of this research has been concerned with finding counterexamples to various
questions that have arisen. These examples are referred to within the thesis and often
the same example is used for several purposes. Rather than scatter the details throughout
the thesis, we have gathered the examples together in the final two chapters.

Chapter 10 collects together a variety of examples some of which have been found
in the literature and some of which have been purpose built.

Finally, in Chapter 11 we describe a large family of examples within a common
format. Each space is a tree S with an added point ∗, the boss point, which is used to
control a topology on the space S = S∪ {∗}. The methods used to analyse S seem quite
general and perhaps could be extended to cover other trees.



Chapter 2

Point-sensitive background

In this short chapter we collect together various facts from point-set topology. There is
nothing new here (but one result is not as well known as it should be). The chapter helps
to fix various notations and conventions.

Let S be a topological space. We write

OS CS

for, respectively, the family of open sets (the topology) and the family of closed sets of
S. For an arbitrary subset E ⊆ S we write

E◦ E− E ′

for, respectively, the interior, the closure, and the set theoretic complement of E in S.
We tend to use

U, V,W, . . . X, Y, Z, . . . E, F,G . . .

to range over
open closed arbitrary

subsets of S respectively. However, there will be times when this informal convention is
broken.

We often say ‘space’ as an abbreviation of ‘topological space’ (for no other kind of
space occurs here).

2.1 Basic separation properties, sobriety and regu-

larity

We will make frequent use of the standard topological separation properties T0, T1 and
T2.

We also use the topological notion of sobriety.

Definition 2.1.1. A non-empty closed set X is irreducible in a space S if

U meets X
V meets X

}
=⇒ U ∩ V meets X

for every two open sets U and V .
A space is sober if it is T0 and every closed irreducible set is a point closure. �

7



8 CHAPTER 2. POINT-SENSITIVE BACKGROUND

This notion of sobriety is equivalent to the requirement that each closed irreducible
set is a unique point closure. Uniqueness is given by the T0 property.

Most of the spaces we consider are sober, but a few are not. One pair of non
sober spaces that crop up occasionally are the cofinite and cocountable topologies of
Section 10.1.

Every T2 space is sober, but the properties T1 and sobriety are incomparable; we can
have either one without the other.

If a space is not sober, there is a way to sober it up.

Definition 2.1.2. Let S be a topological space. The sober reflection of S (written +S) is
the topological space whose points are the closed irreducible sets of S. For each U ∈ OS
let +U ⊆ +S be given by

X ∈ +U ⇐⇒ U meets X

for each X ∈ +S. Then

O+S = {+U | U ∈ OS}

is the appropriate topology on +S. �

It is straightforward to check that O+S is a topology on +S and later that

OS - O+S

U - +U

is a frame morphism in the sense defined in 3.1.4.
Furthermore, +S is sober as expected and the assignment

S - +S

p - p−

is continuous. The justification for calling this construction the sober reflection is pro-
vided by the following lemma which we state without proof.

Lemma 2.1.3. For each continuous map

S
φ

- T

from an arbitrary space S to a sober space T , there is a unique continuous map

+S
+φ

- T

such that

S
φ

- T

+S

+φ

-

-

commutes.
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It is possible to produce the sober reflection in a neater way by using the point space
of a frame, as we will see in Lemma 3.3.10.

When we construct the sober reflection of a particular space S, the notation can be-
come unnecessarily complicated if we insist on using the closed irreducible sets themselves
to label the points of +S. Instead we will often find it convenient to use the original points
of S (to stand for their point closures) and add in extra points as representatives of the
closed irreducible sets that are not already point closures. This is what we do when we
look at the cofinite and cocountable topologies in Section 10.1; we throw in an extra
point with the necessary properties so that the whole space becomes a point closure.

On occasion we will need a space which is T1 and sober but not T2. It seems plausible
that such a space could be constructed as the sober reflection of a T1 space. It might
seem plausible, but it never works.

Lemma 2.1.4. If a space S has a sober reflection +S which is T1, then S is already sober
and T1.

Proof. We know that S ⊆ +S where S carries the subspace topology. Suppose X ⊆ S is
a closed irreducible set of S, and consider the closure X− of X in +S. If U ∈ O+S, we
have

X− meets U =⇒ X meets U =⇒ X meets S ∩ U

and hence X− is irreducible in +S. Now, +S is T1 and sober, and so X− = {p} for some
p ∈ +S, and hence X = {p}.

A space is T1 and sober precisely when each closed irreducible set is a singleton. As
we will see later, spaces that are both T1 and sober but not T2 can be tricky to find.

The separation property regularity is commonly used to analyse topological spaces.
It is a strong condition that makes many of the constructions we are studying trivial, so
most of the spaces we study are not regular. In Section 3.5 we will extend the concept
of regularity to a point-free setting, and later on we weaken this to give a hierarchy of
separation properties connected with the patch assembly.

Definition 2.1.5. A topological space S is regular if for each p /∈ X ∈ CS there are
U, V ∈ OS such that

p ∈ U X ⊆ V U ∩ V = ∅

hold. �

A space can be regular without being T0, and for this reason we make use of the
property

T3 = T0 + regular

which fits into the usual hierarchy

T3 =⇒ T2 =⇒ T1 =⇒ T0

in a natural way.



10 CHAPTER 2. POINT-SENSITIVE BACKGROUND

2.2 Saturation and compact saturated sets

Every topological space carries a pre-order on its points. This is the specialisation order
and it gives us some useful information about the structure of the space.

Definition 2.2.1. Let S be a topological space. The specialisation order on S is the
comparison v given by

p v q ⇐⇒ p− ⊆ q−

for p, q ∈ S. �

It is almost trivial that this comparison v is a pre-order (that is, it is reflexive and
transitive). It is a partial order precisely when the space S is T0, and it is equality
precisely when S is T1.

In this thesis we are concerned almost exclusively with spaces that are at least T0, so
we consider the specialisation order to be a partial order.

Using this partial order on a T0 space, we can introduce the concept of saturation.
In simple terms, a set is saturated when it is an upper section with respect to the
specialisation order.

Definition 2.2.2. Let (S,≤) be a poset. For each subset E of S

↓E ↑E

are, respectively, the
lower section upper section

generated by E, that is the subsets

{x | (∃e ∈ E)[x ≤ e]} {x | (∃e ∈ E)[x ≥ e]}

respectively.
We say that ↑E is the saturation of E and E is saturated if E = ↑E. �

We write ↓p for ↓{p} and ↑p for ↑{p}.
Trivially ↑↑E = ↑E so the saturation of E is saturated as we would expect.
Notice that for any topological space S and point p ∈ S, we have

↓p = p−

by the definition of the specialisation order. However, the same is not generally true for
arbitrary subsets of S. Usually

↓E 6= E−

although there is a class of topologies (the Alexandroff topologies) for which ↓(·) and (·)−
agree.

In a topological space the saturation of a subset can be obtained without direct
reference to the specialisation order.

Lemma 2.2.3. Let S be a topological space. For each subset E the intersection⋂
{U ∈ OS | E ⊆ U}

is the saturation ↑E of E.
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Proof. If x ∈ ↑E then there exists e ∈ E such that e v x, or in other words e− ⊆ x−.
Equivalently, we have

e ∈ U =⇒ x ∈ U
for every open set U ∈ OS. Hence

x ∈
⋂
{U ∈ OS | e ∈ U} ⊆

⋂
{U ∈ OS | E ⊆ U}

to give the inclusion ↑E ⊆
⋂
{U ∈ OS | E ⊆ U}.

Conversely, if x ∈
⋂
{U ∈ OS | E ⊆ U} then

E ⊆ U =⇒ x ∈ U

for every open set U . Now there must be some e ∈ E such that e v x.

By the above lemma, each open set of a space is saturated. However, the converse
need not hold and there are usually plenty of saturated sets which are not open. For
instance in a T1 space every set is saturated.

In an Alexandroff space the converse holds: every saturated set is open. We define
these below.

In any poset the family of saturated sets (upper sections) is closed under arbitrary
unions and intersections. In particular the saturated sets form a topology. The fact that
this collection of sets is closed under all intersections, not just finite ones gives these
topologies some special properties.

Definition 2.2.4. Let (S,≤) be a partial order. The Alexandroff topology on S is the
topology consisting of all saturated sets. �

Recall the definition of a compact set.

Definition 2.2.5. An open cover for a set A is a collection U of open sets such that

A ⊆
⋃
U

holds.
A subcover of an open cover U for A is a sub-collection V ⊆ U which still forms an

open cover for A.
A cover U is directed if it is ⊆-directed, that is for each U, V ∈ U there is some W ∈ U

with U ∪ V ⊆ W .
A subset X of a topological space S is compact if every open cover of X has a finite

subcover. �

Often it is be convenient to use an equivalent formulation of compactness. We rewrite
the definition in terms of directed open covers.

Lemma 2.2.6. Let S be a topological space. A set X ⊆ S is compact if and only if for
every directed open cover W there exists some W ∈ W such that X ⊆ W .

Proof. If X is compact and W is a directed open cover then there must be a finite cover,
V . But by the directedness of W we must have

⋃
V ∈ W .

Conversely, suppose X has the property that for every directed open cover W there
exists some W ∈ W such that X ⊆ W . If U is any open cover, then we can transform
this into a directed open cover U0 by adding in all finite unions. Now there exists U ∈ U0

such that X ⊆ U . However, U is just a finite union of elements of U , giving us a finite
subcover of U as required.
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A major topic of this thesis is an analysis of the compact saturated subsets of a space.
We give this family a name.

Definition 2.2.7. For a topological space S, let QS be the collection of compact satu-
rated subsets of S. �

The empty set is in QS. A simple calculation shows that for each point p ∈ S the
saturation ↑p is in QS. This can be generalised.

Lemma 2.2.8. Let K be a compact subset of a space S. The saturation ↑K is in QS.

Proof. We need to show that if K is compact, then so is ↑K. Suppose U is a directed
open cover of ↑K. Then U is also a directed open cover of K, so there exists U ∈ U
with K ⊆ U . But then ↑K ⊆ U since U is a saturated set including K. Hence ↑K is
compact.

It is straightforward to check that the union of two compact sets is compact and the
union of two saturated sets is saturated. Thus we have the following.

Lemma 2.2.9. The union of two compact saturated sets is compact saturated.

On the other hand, the union of an arbitrary family of compact saturated sets need
not be compact saturated. To see this, consider the union of all ↑p for every point p of a
(non-compact) space S.

Also it is not the case that the intersection of any two compact saturated sets must
be compact saturated.

Example 2.2.10. Consider the integers Z with two extra points l and r below each
m ∈ Z. Set

S = {l, r} ∪ Z

and consider the Alexandroff topology on S. Both the sets

↑l = {l} ∪ Z ↑r = {r} ∪ Z

are compact saturated, but

↑l ∩ ↑r = Z

is not, since

{↑m | m ∈ Z}

is an open covering with no finite subcover. �

In a T2 space the compact saturated subsets are nicely behaved as the following
lemmas show. We do not have this good behaviour in general, and in the next chapter
we show one way we might try to fix this situation.

Lemma 2.2.11. In a T2 space every compact (saturated) set is closed.
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Proof. In a T2 space every set is saturated. Let Q be a compact set and p a point not in
Q. We show that p lies in an open neighbourhood disjoint from Q.

The T2 property says that for each point q ∈ Q there exist open sets Uq, Vq such that

p ∈ Uq q ∈ Vq Uq ∩ Vq = ∅

hold. Then the collection

{Vq | q ∈ Q}

forms an open cover of Q, hence by compactness has a finite subcover

{Vi | i ∈ I}

where I is a finite subset of Q. Now

U =
⋂
{Ui | i ∈ I}

is open, contains p and is disjoint from Q as required.

This proof also gives us the following result, which should be compared with Defini-
tion 2.1.5.

Corollary 2.2.12. Let S be a T2 space. For a point p and compact (saturated) set Q not
containing p there exist open sets U, V such that

p ∈ U Q ⊆ V U ∩ V = ∅

hold.

Proof. Immediate from the proof of the previous lemma. Set U =
⋂
{Ui | i ∈ I} as above

and let

V =
⋃
{Vi | i ∈ I}

to give the required properties.

2.3 The front topology

The front topology of a space S is the smallest topology that makes all the original closed
sets clopen. This may look like a very uninteresting topology, but we will see that it has
some relevance to the point-free constructions we look at later on.

Definition 2.3.1. The front space fS of a topological space S has the same points as S
but the finer topology OfS generated by

{U ∩X | U ∈ OS,X ∈ CS}

as a base. �
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It can be checked that

{U ∩ p− | U ∈ OS,X ∈ CS}

is also a base for the front topology on S. In fact the sets

U ∩ p−

for U ∈ OS form the front open neighbourhoods of p ∈ S.
For E ⊆ S we write

E2 E=

for, respectively, the front interior and the front closure of E. These are related by

E◦ ⊆ E2 ⊆ E ⊆ E= ⊆ E−

and can be distinct.
It is easy to show that

p ∈ E= ⇐⇒ (∀U ∈ OS)[p ∈ U =⇒ E ∩ U ∩ p− 6= ∅]

holds.
At first sight it seems that fS is just the discrete space. This is not so. A moment’s

reflection gives us the following basic facts.

Lemma 2.3.2. Let S be a topological space.
If S is T1 then fS is discrete.
If fS is discrete then S is T0.
If S is T0 then ffS is discrete.

In the third clause of Lemma 2.3.2 we used the second front space ffS. There are
examples of sober spaces S such that

OS OfS OffS = PS

are distinct.

Example 2.3.3. Let S be the set of real numbers furnished with the topology generated
by all sets of the form (p,∞) for p ∈ R. Its front topology fS is then generated by all
sets of the form (p, q] for p, q ∈ R. This is not discrete. It is, however, T1 and so by the
previous lemma ffS is discrete. �

The front construction is a useful technical device. It will reappear in Chapter 6 when
we look at the properties of the assembly on a frame. It is also helpful when handling
sober spaces.

Theorem 2.3.4. If S is a sober space, then so is its front space fS.

Proof. We see immediately that fS is T0, because S is. It remains to show that every
closed irreducible set in fS is a point closure.

Suppose that F ⊆ S is closed and irreducible in fS. Then for every U, V ∈ OS and
X, Y ∈ CS

F ∩X ∩ U 6= ∅
F ∩ Y ∩ V 6= ∅

}
=⇒ F ∩X ∩ Y ∩ U ∩ V 6= ∅
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holds by definition. We show first that F− is closed and irreducible in S.
Suppose that F− ∩ U 6= ∅ and F− ∩ V 6= ∅. Then by the properties of the closure

operation we have F ∩U 6= ∅ and F ∩ V 6= ∅ and so F ∩U ∩ V 6= ∅ by irreducibility of
F in fS. Hence

F− ∩ U ∩ V 6= ∅

which is the required property.
We know that S is sober, and so F− = {p}− for some point p ∈ S. We show next

that p ∈ F . For suppose p ∈ U ∈ OS. Then F− ∩ U 6= ∅ and therefore F ∩ U 6= ∅.
Hence every front open neighbourhood of p of the form U ∩ p− also meets F . This gives
p ∈ F= = F as required.

Each T0 space T is embedded as a subspace in its sober reflection +T . In particular, if
we have T ⊆ S for some sober space S then T ⊆ +T ⊆ S. Where can we find this sober
space?

Theorem 2.3.5. Let S be a sober space and let T ⊆ S be an arbitrary subset. Then T
is front closed in S precisely when, as a subspace, T is sober.

Proof. Suppose first that T is front closed. As a subspace the closed subsets of T are
those of the form

T ∩X
for X ∈ CS. Such a set is a point closure in T precisely when

T ∩X = T ∩ p−

for some p ∈ T .
Suppose that T ∩X is closed and irreducible in T . Thus

T ∩X ∩ U 6= ∅
T ∩X ∩ V 6= ∅

}
=⇒ T ∩X ∩ U ∩ V 6= ∅

for U, V ∈ OS. Also for such U, V we have

(T ∩X)− ∩ U 6= ∅ =⇒ T ∩X ∩ U 6= ∅

(T ∩X)− ∩ V 6= ∅ =⇒ T ∩X ∩ V 6= ∅

to show that (T ∩X)− is closed irreducible in S. Since S is sober this gives

(T ∩X)− = p−

for some (unique) p ∈ (T ∩X)−. We have

p ∈ (T ∩X)− ⊆ X− = X

and hence p− ⊆ X. Thus

T ∩ p− ⊆ T ∩X ⊆ T ∩ (T ∩X)− ⊆ T ∩ p−

so that
T ∩X = T ∩ p−



16 CHAPTER 2. POINT-SENSITIVE BACKGROUND

and it suffices to show that p ∈ T .
For each U ∈ OS, since (T ∩X)− = p−, we have

p ∈ U =⇒ (T ∩X)− meets U

=⇒ T ∩X ∩ U 6= ∅
=⇒ T ∩ U ∩ p− 6= ∅

and hence
p ∈ T= = T

(since T is front closed), as required.
Conversely, suppose that as a subspace T is sober. We show that T= ⊆ T .
Consider any p ∈ T=, so that (by the construction of T=)

p ∈ U ⇐⇒ T ∩ U ∩ p− 6= ∅

for each U ∈ OS. In particular, with U = S we have

T ∩ p− 6= ∅

and this set is certainly closed in T . We claim that it is irreducible in T . Thus for each
U, V ∈ OS we have

T ∩ p− ∩ U 6= ∅
T ∩ p− ∩ V 6= ∅

}
=⇒ p ∈ U ∩ V =⇒ T ∩ p− ∩ U ∩ V 6= ∅

to justify the claim. Since T is sober this gives

T ∩ p− = T ∩ q−

for some q ∈ T ∩ p−. In particular, q ∈ p−. But now, for each U ∈ OS we have

p ∈ U =⇒ T ∩ p− ∩ U 6= ∅
=⇒ T ∩ q− ∩ U 6= ∅
=⇒ q− ∩ U 6= ∅
=⇒ q ∈ U

so that p ∈ q− and hence p− = q−. Since S is T0 this gives p = q ∈ T as required.

This result gives us a method of locating the sober reflection of a T0 space.

Corollary 2.3.6. Let T be a T0 space and suppose T ⊆ S for some sober space S. Then
the sober reflection +T of T is the front closure of T in S.

Proof. Whatever +T is we must have

T ⊆ +T ⊆ S

and +T is front closed, by the previous theorem. Thus T= ⊆ +T . Similarly

T ⊆ T= ⊆ S

and T= is sober again by the previous theorem. Thus +T ⊆ T=.

This useful little result ought to be better known.



Chapter 3

Point-free background

In this chapter we gather together all the basic point-free material. There is almost
nothing here that isn’t well known.

3.1 Frames

Frames are the main tool for doing point-free topology.
A frame is a partially ordered set with certain other properties. The canonical example

of a frame is the collection of open sets on a topological space with the ordering given
by set inclusion. However, there are also many examples of frames that are not at all
space-like.

We will see that there is a contravariant adjunction between the category of frames
and the category of topological spaces.

Definition 3.1.1. A frame is a structure(
A,≤,∧,

∨
,>,⊥

)
such that

• (A,≤) is a complete poset
• (A,≤,∧,>) is a ∧-semilattice
• (A,≤,

∨
,⊥) is a

∨
-semilattice

and the Frame Distributive Law

a ∧
∨

X =
∨
{a ∧ x | x ∈ X}

holds for each a ∈ A and X ⊆ A. �

As we will see in Definition 3.1.4, a morphism between frames preserves the distin-
guished attributes. However, there are other operations that may not be preserved.

Each frame carries a negation and an implication operation.

Definition 3.1.2. Let A be a frame.
The negation operation ¬ on A is given by

¬a =
∨
{x | a ∧ x = ⊥}

17



18 CHAPTER 3. POINT-FREE BACKGROUND

for each a ∈ A.
The implication operation ⊃ on A is given by

x ≤ (a ⊃ b) ⇐⇒ a ∧ x ≤ b

for each a, b, x ∈ A. �

Of course, we need to show that the implication operation does exist. In fact, we can
prove a stronger result.

Theorem 3.1.3. A complete lattice A is a frame if and only if A carries an implication.

Proof. (⇐=) Suppose A is a frame. For a, b ∈ A let X ⊆ A be given by

x ∈ X ⇐⇒ a ∧ x ≤ b

(for x ∈ A). Let c =
∨
X. We show that c is a ⊃ b. Trivially for all x ∈ A

a ∧ x ≤ b =⇒ x ≤ c

so it suffices to check the converse implication. But the frame distribution law gives

a ∧ c = a ∧
∨

X =
∨
{a ∧ x | x ∈ X} ≤ b

and hence
x ≤ c =⇒ a ∧ x ≤ a ∧ c ≤ b

as required.
(=⇒) Now suppose (A,≤,∧,

∨
,>,⊥) is a complete lattice with an implication oper-

ation. We need to show that the frame distributive law holds. One inequality

a ∧
∨

X ≥
∨
{a ∧ x | x ∈ X}

is trivial. For the other, let

b =
∨
{a ∧ x | x ∈ X}

so that a ∧ x ≤ b for all x ∈ X. Thus x ≤ a ⊃ b for each x ∈ X and hence∨
X ≤ a ⊃ b

to give a ∧
∨
X ≤ b as required.

Frames are the objects of a category. What are the arrows?

Definition 3.1.4. A frame morphism

A
f

- B

between frames A and B is a function

f : A - B

which preserves ≤,∧,
∨
,> and ⊥. �
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This gives us a category Frm of frames and frame morphisms.
For any topological space S its collection of open sets OS is a frame under the usual

operations ⊆,∩,
⋃

. This is our motivation for the definition. By looking at frames, we
can analyse these topologies without referring to the points of the space.

However, there are also many frames which are not topologies (non-spatial frames).
In Section 3.3 we will see how to get from a non-spatial frame to a spatial one.

Lemma 3.1.5. There is a contravariant functor

O : Top - Frm

with object assignment and arrow assigment

S - OS φ - φ∗

respectively for each space S and map φ. Here OS is the topology of S, and φ∗ is the
restriction of the inverse image function φ← to open sets.

Proof. Given

φ : S - T

in Top, the map

φ∗ : OT - OS

is a frame morphism. It is easy to check that identities and composition are preserved.

In Section 3.3 we produce a contravariant adjoint to this functor. We also use a
different kind of adjunction.

Definition 3.1.6. Let f be a monotone map between two posets A and B. A monotone
map g is a right adjoint to f if

fx ≤ y ⇐⇒ x ≤ gy

holds for all x ∈ A, y ∈ B. �

If a right adjoint exists then it must be unique but not every monotone map has a
right adjoint. There is a necessary and sufficient condition for the existence of a right
adjoint but we do not need it here. However, every frame morphism does have a right
adjoint. We also use the result that for an adjoint pair, the left adjoint preserves arbitrary
suprema and the right adjoint preserves arbitrary infima.

We sometimes use the notation
f ∗ ` f∗

to indicate that f ∗ is the left adjoint and f∗ is the right adjoint.
For every continuous map φ in Top from S to T , the corresponding frame morphism

φ∗ : OT - OS

must have a right adjoint which we refer to as φ∗.
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Lemma 3.1.7. The right adjoint of φ∗ is given by

φ∗W = φ[W ′]−
′

for every W ∈ OT

Left and right adjoints combine to produce what we will see are very important
gadgets.

Definition 3.1.8. If f ∗ is an arbitrary frame morphism, the kernel of f ∗ is given by

ker(f) = f∗ ◦ f ∗

where f∗ is the right adjoint of f ∗. �

Every kernel is a nucleus. These are discussed in Chapter 5.

3.2 Filters

We need a way of adding some extra structure to a frame. Since frames are the tools we
use to look at spaces in a point-free way, we need to find an analogue for certain kinds
of subsets of the space. In particular, we need something that performs the function of
compact saturated sets. This is where filters come in.

Definition 3.2.1. Let A be a frame. A subset F of A is a filter if
• > ∈ F .
• a ≤ b, a ∈ F =⇒ b ∈ F .
• a, b ∈ F =⇒ a ∧ b ∈ F .

A filter is proper if ⊥ /∈ F . �

We are interested in filters with particular properties.

Definition 3.2.2. Let A be a frame. We say that a proper filter F on A is
• prime if

x ∨ y ∈ F =⇒ x ∈ F or y ∈ F
for every x, y ∈ A.

• completely prime if ∨
X ∈ F =⇒ X meets F

for every subset X of A. �

Open filters (or to give them their full title, Scott open filters) are more general
gadgets than completely prime filters.

Definition 3.2.3. Let A be a frame. A filter F on A is (Scott) open if∨
X ∈ F =⇒ X ∩ F 6= ∅

for every directed set X ⊆ A. �

Trivially each completely prime filter is prime and open. We can improve this obser-
vation.
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Lemma 3.2.4. A filter is completely prime if and only if it is prime and (Scott) open.

Proof. The implication

completely prime =⇒ prime + open

is trivial.
For the other direction, suppose that ∇ is a filter that is prime and open and that∨
X ∈ ∇ for some arbitrary set X. Let X be the directed closure of X obtained by

adding in all finite joins. Thus ∨
X =

∨
X ∈ ∇

and so, because ∇ is open, there exists some x ∈ X with x ∈ ∇. By the construction of
X we have x =

∨
Y for some finite Y ⊆ X. Therefore, since ∇ is prime, Y meets ∇ and

hence X meets ∇ as required.

Open filters have other nice properties.

Lemma 3.2.5. 1. The intersection of two open filters is open.
2. The union of a directed family of open filters is open.

Proof. 1. Suppose F and G are open filters on a frame A and X is a directed subset of
A with

∨
X ∈ F ∩G. Then ∨

X ∈ F
∨

X ∈ G

so that
X ∩ F 6= ∅ 6= X ∩G

to give a, b ∈ X with a ∈ F and b ∈ G. By the directedness of X there exists c ∈ X with
a, b ≤ c. So by the upwards closure property c ∈ F ∩ G and hence X meets F ∩ G as
required.

2. Suppose F is a directed family of open filters on A and X is a directed subset of A
with

∨
X ∈

⋃
F . Then

∨
X ∈ F for some F ∈ F so X meets F and therefore X meets⋃

F as required.

In the case where F is a collection of filters that is not directed, taking the union may
not give us a filter, so we have to form

∨
F , the filter generated by the elements of

⋃
F .

This operation does not necessarily preserve open filters.

3.3 The point space of a frame

We have seen that if S is a topological space, then its topology OS is a frame, and that
the operation that sends a space to its frame of opens

S - OS

is a contravariant functor.
However it is not the case that every frame is the topology of some space. The

functor O does not have an inverse, but it does have an adjoint that takes each frame to
a topological space. This is the point space construction.
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Definition 3.3.1. Let A be a frame. A character of A is a frame morphism to the
2-element frame 2. �

There is a correspondence between characters of a frame and two other gadgets: prime
filters and ∧-irreducible elements.

Definition 3.3.2. Let A be a frame. An element p ∈ A is ∧-irreducible if p 6= > and

x ∧ y ≤ p =⇒ x ≤ p or y ≤ p

holds for each x, y ∈ A. �

We can use the following to move between three different kinds of widgets.

Lemma 3.3.3. Let A be a frame. The gadgets
• characters of A
• completely prime filters of A
• ∧-irreducible elements of A

are in pairwise bijective correspondence.

Proof. It is easy but tedious to check that the widgets constructed in this proof have all
the properties claimed.

Suppose p is a character of A. Then

∇ = {a ∈ A | pa = 1}

is a completely prime filter. Conversely if ∇ is a completely prime filter then the function

p : A - 2

defined by
pa = 1 ⇐⇒ a ∈ ∇

is a frame morphism.
Suppose a is a ∧-irreducible element of A. Define ∇ ⊆ A by

∇ = {x | x � a}

to give a completely prime filter. Conversely if ∇ is a completely prime filter then set
a =

∨
(A−∇) so that

x ∈ ∇ ⇐⇒ x � a

and a is irreducible.

To convert a frame into a space we first produce the points.

Definition 3.3.4. Let A be a frame. The point space of A is the collection of all ∧-
irreducible elements of A. We write this as ptA. �

By Lemma 3.3.3 we could equally well describe the point space of A as the collection
of all completely prime filters of A or the collection of all characters of A. The different
ways of describing the points of a frame are useful in different circumstances. Most often
we make use of ∧-irreducible elements, but we will use the other descriptions when it
suits us.

For ptA to be a space, it needs a topology.
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Definition 3.3.5. Let A be a frame with point space S = ptA viewed as ∧-irreducible
elements. Define

UA(a) = {p ∈ S | a � p}

for each element a ∈ A. When the frame in question is clear, we drop the subscript A
and just write U(a). �

We could also write this definition in terms of characters or completely prime filters,
but this is the one that we will find the most useful. Finite intersections and arbitrary
unions of sets of this form are also of this form:

U(a) ∩ U(b) = U(a ∧ b)

and ⋃
{U(a) | a ∈ X} = U

( ∨
X

)
hold for all a, b ∈ A and X ⊆ A. The following lemma is immediate.

Lemma 3.3.6. Let A be a frame with point space S = ptA. The collection of sets

{U(a) | a ∈ A}

forms a topology on S and

A
Ua(·) - OS

is a surjective frame morphsim.

At the beginning of Section 2.2 we defined the specialisation order for a topological
space. How does this ordering work on the point space of a frame?

Lemma 3.3.7. Let A be a frame with point space S. The specialisation order on S is
the reverse of the order inherited from A.

Let’s expand on this result. We view the point space S of a frame A as a certain
subset of A (the set of ∧-irreducible elements). As such S inherits a comparison ≤ from
A, but this is not the specialisation order. As before we write v for the specialisation
order. Thus

p v q ⇐⇒ q ≤ p

for p, q ∈ S.
Each frame A has a surjective frame morphism to the topology OS of its point space.

As such this has a right adjoint.

A
U∗

-�
U∗

OS

Thus U∗ = UA is the notation of Definition 3.3.5. It is useful to have a description of U∗.
Each open set of S has the form X ′ for a closed set X of S. This X is a subset of A and
so has an infimum

∧
X in A.
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Lemma 3.3.8. In the notation above, for each X ∈ CS we have

U∗(X
′) =

∧
X

where this infimum is computed in A.

Proof. Using the adjunction U∗ ` U∗, for each a ∈ A we have

a ≤ U∗(X
′) ⇐⇒ U∗(a) ⊆ X ′

⇐⇒ (∀p ∈ S)[a � p =⇒ p ∈ X ′]
⇐⇒ (∀p ∈ S)[p ∈ X =⇒ a ≤ p]

⇐⇒ a ≤
∧

X

which gives the required result.

Using this we can indicate why we pay special attention to sober spaces.

Lemma 3.3.9. The point space S of a frame A is sober.

Proof. The specialisation order of S is the opposite of the comparison inherited from A.
In particular, the specialisation order is a partial order and so S is T0.

Now suppose that X ∈ CS is irreducible. Let p =
∧
X in A. We show that p is a

point of A and that X = p−.
Since X 6= ∅ there is some q ∈ X, and hence p ≤ q < >. To show that p is

∧-irreducible we argue by contradiction. Thus suppose

a � p b � p a ∧ b ≤ p

(for some a, b ∈ A). The first two give q, r ∈ X with

a � q b � r

and hence
X meets U(a) X meets U(b)

at q and r respectively. Since X is irreducible we have

X ∩ U(a ∧ b) 6= ∅

and hence some s ∈ X with a∧ b � s. But now a∧ b ≤ p ≤ s which is the contradiction.
This shows that p ∈ S. To show that

X = p−

we first observe that
q ∈ p− ⇐⇒ q v p⇐⇒ p ≤ q

for each q ∈ S. Thus an equivalence

q ∈ X ⇐⇒ p ≤ q

will complete the proof.
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The implication (=⇒) is immediate by the definition p =
∧
X. For the converse we

have X ′ = U(c) for some c ∈ A. But then

q ∈ X ⇐⇒ c ≤ q

to give c ≤
∧
X = p. Hence

p ≤ q =⇒ c ≤ q =⇒ q ∈ X

as required.

It can be shown that for a topological space S the point space of OS is homeomorphic
to S exactly when S is sober.

We can use this to give an alternative characterisation of the sober reflection of a
space.

Lemma 3.3.10. Let S be a topological space. The point space of OS is the sober reflection
of S.

We need not prove this here. The clue is that the closed irreducible subsets of a space
S are precisely the complements of the ∧-irreducibles of the topology OS. We find that

S - pt(OS)

p - p−
′

is the reflection map.

3.4 The Hofmann-Mislove Theorem

Whereas completely prime filters on a topology of a sober space correspond to the points
of the space, the usual Hofmann-Mislove Theorem gives us a correspondence between
open filters and compact saturated sets.

Here we will generalise this slightly. We start from a frame A and show that an open
filter corresponds to a compact saturated set in the point space S = ptA.

For each compact saturated set Q ∈ QS we can obtain an open filter ∇(Q) on A by

x ∈ ∇(Q) ⇐⇒ Q ⊆ UA(x)

where UA is the usual reflection morphism from A to OS. We will show that every open
filter of A arises in this way from a unique Q ∈ QS.

Lemma 3.4.1. Let F be an arbitrary open filter of A. Let M be the set of maximal
members of A− F . Then for each a ∈ A− F there is some m ∈M with a ≤ m.

Proof. Since F is open the complement A − F is closed under directed suprema, and
hence the result follows by a standard application of Zorn’s Lemma.

Next we observe that each m ∈M is a point of A. That is, m 6= > and for x, y ∈ A

x ∧ y ≤ m =⇒ x ≤ m or y ≤ m

holds. This follows by checking the contrapositive.
So, since M ⊆ S we can rephrase Lemma 3.4.1 as follows.
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Corollary 3.4.2. The equivalence

M ⊆ UA(a) ⇐⇒ a ∈ F

holds for each a ∈ A.

Proof. Suppose that a ∈ F . Then for each m ∈ M we have m /∈ F so that a � m and
hence m ∈ UA(a).

Now suppose that a /∈ F . Then, by Lemma 3.4.1 there is some m ∈ M with a ≤ m,
so that m /∈ UA(a) and hence M * UA(a) as required.

This result has another more important consequence.

Lemma 3.4.3. The set M is compact (in S).

Proof. Consider any open cover

{UA(x) | x ∈ X}

of M . In the usual way, we may assume that the index set X is directed. Let a =
∨
X.

Then
M ⊆

⋃
{UA(x) | x ∈ X} = UA(a)

and hence a ∈ F . But F is open and X is directed, so that x ∈ F for some x ∈ X. This
gives M ⊆ UA(x) to produce the required subcover.

Now let Q be the saturation of M . Since every open set is saturated, we see that Q
and M have exactly the same open supersets. In particular, Q is compact, and hence
Q ∈ QS. Notice also that for each x ∈ A we have

x ∈ F ⇐⇒M ⊆ UA(x) ⇐⇒ Q ⊆ UA(x)

so that F arises from Q in the way we want.
Now we show that this is the only compact saturated set attached to F in this way.

Suppose there are two, say P,Q. Then

P ⊆ UA(x) ⇐⇒ Q ⊆ UA(x)

for each x ∈ A. This can be rephrased as

(∃p ∈ P )[x ≤ p] ⇐⇒ (∃q ∈ Q)[x ≤ q]

for each x ∈ A. Consider any p ∈ P and let x = p. Then we have some q ∈ Q with p ≤ q,
and hence q v p. Since Q is saturated, this gives p ∈ P and hence Q ⊆ P . Similarly
P ⊆ Q.

This shows that each open filter F arises from a unique Q ∈ QS in a canonical way.

Lemma 3.4.4. For S, F and Q all as above, Q = S − F .

Proof. Consider any q ∈ Q. Then, since Q is the saturation of M there is some m ∈ M
such that m v q in the specialisation order on S. But now in the original ordering on
the frame, q ≤ m /∈ F so that q /∈ F . This gives Q ⊆ (S − F ).

Conversely, suppose p ∈ S − F . Since p ∈ A − F , Lemma 3.4.1 gives some m ∈ M
with p ≤ m. But then m v p and hence p ∈ Q as required.

We return to these ideas in Chapter 5.
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3.5 The frame separation properties regular and fit

In this section we look at two separation properties on frames. One is the point-free
version of regularity, the other is a weakening of this condition that has important im-
plications in the analysis of the full assembly.

Definition 3.5.1. A frame A is regular if for each a, b ∈ A with a � b there exist x, y ∈ A
such that

a ∨ x = > y � b x ∧ y = ⊥

hold.
A frame A is fit if for each a, b ∈ A with a � b there exist x, y ∈ A such that

a ∨ x = > y � b x ∧ y ≤ b

hold. �

We will discuss regularity first, then fitness.
It is easy to see that this point-free notion of regularity ties in with the point-sensitive

notion of regularity.

Lemma 3.5.2. A space S is regular if and only if the frame OS is regular.

Proof. Suppose the space S is regular, and M,N ∈ OS with M * N . Then there exists
p such that p ∈ M, p /∈ N . Now set X = M ′; then p /∈ X, so we can apply Definition
2.1.5 to get U, V ∈ OS such that

X ⊆ U p ∈ V U ∩ V = ∅

hold. But then M ∪ U = S,

p ∈ V, p /∈ N =⇒ V * N

and U ∩ V = ∅ as required for OS to be regular.
Conversely, suppose that OS is regular and p /∈ X ∈ CS. Then we have X ′ * p−

′
and

so there are U, V ∈ OS such that

X ′ ∪ U = S V * p−
′

U ∩ V = ∅

hold. But then
X ⊆ U p ∈ V U ∩ V = ∅

as required for S to be regular.

Closely related to regularity on a frame is the well-inside relation.

Definition 3.5.3. Let A be a frame with a, y ∈ A. We say that y is well-inside a (and
write y 0 a) if there exists x such that

a ∨ x = > y ≤ a x ∧ y = ⊥

hold. �
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From the definitions, we see that A is regular exactly when for each pair a � b there
is some y such that

y 0 a y � b

hold.

Lemma 3.5.4. A frame A is regular if and only if every element of A is the join of
elements well-inside it.

Proof. Suppose A is regular. For a ∈ A let

b =
∨
{y | y 0 a}

so that b ≤ a. If a � b then by the definition of regularity

y 0 a y � b

for some y ∈ A which is a contradiction.

Conversely, suppose

a =
∨
{y | y 0 a}

for each a ∈ A. Then

a � b =⇒ (∃y)[y 0 a and y � b]

which verifies regularity.

In Section 8.3 we will stratify this notion of regularity and obtain a corresponding
stratified notion of well-inside.

Trivially regularity implies fitness. But fitness is strictly weaker.

Example 3.5.5. The frame of open sets of the ‘maximal compact topology’ described
in Section 10.3 is fit but not regular. �

The fitness property doesn’t have an obvious point-sensitive analogue. This is an
example of a situation where following the point-free approach gives us tools not available
in a point-sensitive setting.

However, fitness does have implications for a space.

It is easy to check that each maximal element of a frame is a point. Suppose a ∈ A
is maximal and x ∧ y ≤ a so that a ∨ (x ∧ y) = a. Now

x � a =⇒ a ∨ x > a =⇒ a ∨ x = >

and so > ∧ (a ∨ y) = a giving y ≤ a. This shows that either x ≤ a or y ≤ a as required.

There may also be points that are non-maximal, and there may be no maximal ele-
ments.

Lemma 3.5.6. Let A be a fit frame. The points (viewed as ∧-irreducible elements) of A
are the maximal elements.
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Proof. Suppose that a ∈ A is ∧-irreducible and a < b. Then b � a and because A is fit
there exist x, y ∈ A such that

b ∨ x = > y � a x ∧ y ≤ a

hold. The last two conditions imply that x ≤ a since a is irreducible. Hence

b ∨ a ≥ b ∨ x = >

and so b = > as required.

This gives us a method of producing spaces that are both T1 and sober.

Lemma 3.5.7. If the frame A is fit then ptA is T1 and sober.

Proof. The open sets of ptA are

U(x) = {p | p ∈ ptA, x � p}

for each x ∈ A. Now suppose that p, q ∈ ptA. Then

U(q) = ptA− {q} U(p) = ptA− {p}

to give a T1 separation of p and q.

In particular every sober space with a fit topology is T1.

Lemma 3.5.8. In a space with a fit topology, the three conditions

T0 T1 sober

are equivalent.

Proof. We already know that in a space with a fit topology

sober =⇒ T1 =⇒ T0

so to complete the equivalence, we need to show that if OS is fit then

T0 =⇒ sober

holds.
Let S be a T0 space such that OS is fit. Consider a closed irreducible set X ⊆ S, so

that X ′ is ∧-irreducible in OS. Then

p ∈ X =⇒ p− ⊆ X =⇒ X ′ ⊆ p−
′

holds for every point p ∈ S. By Lemma 3.5.6, X ′ is maximal in OS and so we have
X ′ = p−

′
for each p ∈ X and hence by the T0 property X = p− = {p} and X is a point

closure.

Together with Lemma 3.5.7 this gives us the following result.

Corollary 3.5.9. A T0 space with a fit topology is T1 and sober.

This concludes the background material. We are now ready to move on to the patch
constructions themselves.
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Chapter 4

The point-sensitive patch
construction

The topological spaces most commonly studied are T2 (Hausdorff). These spaces have
a number of desirable properties not necessarily found in non-Hausdorff spaces. One of
these is the property that every compact saturated set is closed, as we saw in Lemma 2.2.11.
In Section 4.1 we give this property the name ‘packed’. This chapter looks at one ap-
proach to making an arbitrary space packed.

All the spaces we look at will be T0. In addition, we will concentrate mainly on sober
spaces. However, there are some interesting examples involving non-sober spaces and
their sober reflections that we will consider. The details of these appear in Section 10.1.

4.1 Packed spaces

Recall from Lemma 2.2.11 that in a T2 (Hausdorff) topological space every set is saturated
and every compact set is already closed. In more general spaces, this is not usually the
case. We need some terminology to refer to spaces where this holds.

Definition 4.1.1. A topological space S is packed if every compact saturated set is
closed. �

The first question is how the property packed relates to the standard separation
properties T0, T1 and T2. It took some time to find an example of a space that was sober
and packed but not T2. In Chapter 11 we examine a class of examples with this property.

Lemma 4.1.2. A topological space that is T0 and packed is T1.

Proof. The set (↑p) is always compact saturated for every point p, and therefore closed.
Now consider two distinct points p, q such that p 6v q in the specialisation order on S.
Then

p ∈ q−′ q ∈ (↑p)′

gives a T1 separation of p and q.

We can have packed spaces that are not T0, but the property

T0 + packed

31
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lies between T1 and T2. Notice that a T0 and packed space need not be sober - the cofinite
topology provides the necessary counterexample.

Some of the spaces that we examine later have an even stronger property than packed.
It is useful to have a name for this.

Definition 4.1.3. A space S is tightly packed if every compact saturated set is finite. �

The examples of Chapter 11 are all tightly packed.

4.2 The point-sensitive patch construction

The point-sensitive patch construction appears in [7] but in a different form.
A space is non-packed if it has at least one compact saturated set which is not closed.

In other words, it doesn’t have enough closed sets or, equivalently, enough open sets. We
attempt to correct the defect by adjoining to the topology new open sets to form a larger
topology. We adjoin precisely those open sets that are missing.

The construction needs a little bit of organisation.
Let S be a space with the usual families OS, CS,QS of respectively: open, closed and

compact saturated subsets.
By Lemma 2.2.9 the family

pbase = {U ∩Q′ | U ∈ OS,Q ∈ QS}

is closed under binary intersections and therefore forms a base for a new topology.
By considering Q = ∅ we see that pbase includes the original topology, and by letting

U = S we see that pbase contains the complement of every compact saturated set.

Definition 4.2.1. For a topological space S, let pS be the space with the same points as
S and the topology OpS generated by pbase. �

In other words, OpS is the smallest topology containing all the original open sets and
also the complement of every compact saturated set of S. Note that doing this may
create new compact saturated sets which are not closed in pS.

Using this construction we see that

S packed ⇐⇒ pS = S

holds.
Let’s prove some basic results about patch topologies.

Lemma 4.2.2. Let S be a topological space. Every patch open subset of S is front open.

Proof. We need to show that for every compact saturated set Q, its complement is front
open. Because Q is saturated, we know that Q′ is a lower section in the specialisation
order, so

p ∈ Q′ =⇒ p− ⊆ Q′

and hence
Q′ =

⋃
{p− | p /∈ Q}

holds. But for each p, its closure is an original closed set and therefore front open. So Q′

is the union of a collection of front open sets and therefore is itself front open.
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The result shows that the patch topology is intermediate between the original topology
and front topology. In other words we have

OS ⊂ - OpS ⊂ - OfS

for every space S.
The next two results relate to separation properties of patch topologies.

Lemma 4.2.3. The patch space of a T0 space is T1.

Proof. Let S be a T0 space and consider p 6v q ∈ S. Then there is some open set U ∈ OS
such that p ∈ U, q /∈ U giving one half of the T1 separation. Now observe that q /∈ ↑p
with ↑p ∈ QS. This gives us a patch open set (↑p)′ which contains q but not p. This is
the other half of the T1 separation.

Lemma 4.2.4. On a T1 space the patch operation is idempotent. That is ppS = pS.

Proof. Let S be a T1 space. All subsets of S and pS are saturated, and every compact
subset of pS is also compact in S. Thus every compact saturated subset of pS is already
patch closed and ppS = pS as required.

Corollary 4.2.5. For every T0 space S we have pppS = ppS.

Proof. Let S be T0. By Lemma 4.2.3 the space pS is T1 and hence applying Lemma 4.2.4
to pS gives the required result.

This is a nice result. Unfortunately there is a fly in the ointment. In the next section,
we see that if we want to keep our spaces sober it is necessary to move to the sober
reflection after using the patch operation. Theorem 10.1.10 will show that if we sober up
after each patch, then the process can go on forever.

Lemma 4.2.6. The patch space of a T2 space is itself.

Proof. This is just a re-statement of Lemma 2.2.11 which says that in a T2 space every
compact set is closed.

4.3 The point-sensitive patch is not always sober

Recall that if a space is sober then its front space is also sober. In contrast to this, we
will show that the point-sensitive patch space of a sober space is not necessarily sober.

We use a similar method to that used in the analysis of the front topology of a sober
space to get some information about the patch space of a sober space. The following
results are interesting because they put some restrictions on the nature of the spaces for
which the patch space is not sober.

Compare the proof of the following Lemma with the proof of Theorem 2.3.4.

Lemma 4.3.1. Let S be a sober space and let F be a closed irreducible subset of pS (that
is, it is patch closed and patch irreducible). Then F is either a singleton or infinite.
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Proof. The set F is closed and irreducible in pS and hence its closure F− is closed and
irreducible in S (because OS ⊆ OpS). The space S is sober, and hence F− = p− for a
unique p ∈ S. But now, since p ∈ F− we have

p ∈ U ∈ OS =⇒ F ∩ U ∩ p− = F ∩ U 6= ∅

and hence p ∈ F=. The set F is patch closed, and hence front closed, so that p ∈ F= = F .
Suppose F 6= {p} and, by way of contradiction, suppose F is finite. Thus

F = {p, q0, . . . , qn}

for some points q0, . . . , qn (distinct from p). For each qi we have qi ∈ F ⊆ p− so that
qi v p in the specialisation order. Thus

p ∈ F ∩ qi−
′

(for otherwise p v qi and then p = qi). This shows that each of

F ∩ (↑p)′, F ∩ q0−
′
, . . . , F ∩ qn−

′

is non-empty (any qi is a suitable witness for the first). But

F ∩ (↑p)′ ∩ q0−
′ ∩ · · · ∩ qn−

′
= ∅

which contradicts the irreducibility of F in pS.

This argument can be refined in different ways to get more information.

Lemma 4.3.2. The patch space of a T1 sober space is T1 and sober.

Proof. Let S be a T1 sober space, and let F be a closed irreducible subset of pS. As in
the proof of Lemma 4.3.1, we have F− = p− for some p ∈ F . But S is T1, so that

p ∈ F ⊆ F− = p− = {p}

and hence F is a singleton, as required.

A second refinement of Lemma 4.3.1 shows that if F is not a singleton then not only
is it infinite, it is wide as well.

Lemma 4.3.3. Let S be a sober space and let F be a closed irreducible subset of pS (that
is, it is patch closed and patch irreducible). Then F is either a singleton or contains an
infinite antichain in the specialisation ordering on S.

Proof. Let S be a sober space and F a patch closed and irreducible set that is not a
singleton.

Observe that the union of a directed family of antichains is an antichain. Hence each
subset includes an antichain that is maximal within the subset. Hence it suffices to show
that there exists an element q0 ∈ F such that any finite antichain containing q0 is not
maximal.



4.4. FUNCTORIAL PROPERTIES OF THE POINT-SENSITIVE PATCH CONSTRUCTION35

We know from Lemma 4.3.1 that F must be infinite, and that F− = p− for some
point p ∈ F . Pick an element r ∈ F with r 6= p. If F ∩ (↑r)′ = ∅ then r is a minimum
for F ; in this case choose q0 with r < q0 < p. Otherwise let q0 = r.

Now the singleton {q0} is an antichain in F with F ∩ (↑q0)′ 6= ∅.
Let A = {q0, . . . , qn} be a finite antichain in F − {p} with

F ∩ (↑qi)′ 6= ∅

for each 0 ≤ i ≤ n. (We have already seen the case n = 0). We have

F ∩ qi−
′ 6= ∅

for each 0 ≤ i ≤ n as witnessed by the point p. Each of qi
−′ and (↑qi)′ is patch open and

hence there is some

qn+1 ∈ F ∩
⋂
{qi−

′ | i ≤ n} ∩
⋂
{(↑qi)′ | i ≤ n}

by the irreducibility of F . Since qn+1 6v qi and qi 6v qn+1 for each 0 ≤ i ≤ n, the set
A ∪ {qn+1} is an antichain that extends A.

In this way each finite antichain containing q0 can be extended by at least one element.
But the union of any directed family of antichains is an antichain and so we obtain an
infinite antichain in F − {p}.

We consider an example where this happens. Here is a sober space which has a
non-sober patch space. The details can be found in Section 10.1.

Example 4.3.4. The patch space of the sober reflection of the cocountable topology is
not sober. �

In fact, we see that when S is the cocountable topology, the point-sensitive patch of
+S is just the cocountable topology on the points of +S. Thus by alternately sobering up
and taking the point-sensitive patch this construction can be iterated indefinitely.

4.4 Functorial properties of the point-sensitive patch

construction

There are some obvious questions regarding the functorality of the point-sensitive patch
construction.

Is it possible to view the point-sensitive patch construction

S - pS

as the object assignment of a functor on the category of topological spaces, or on some
suitable subcategory? Is it possible to view the continuous map

pS - S

as natural relative to this functor and the identity functor? These two questions can be
posed in a more concrete form.
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Suppose that

T
φ

- S

is a continuous map between spaces. This gives three sides of a square

T
φ

- S

pT

6

pS

6

where each side is continuous. Under what circumstances is there a continuous map

pT
pφ

- pS

which makes the square commute?
As functions both the vertical maps are identity functions. Thus, if there is a map

pφ, then as a function it is just φ. Thus we arrive at the following question.
(?) Under what circumstances is a continuous map

T
φ

- S

also patch continuous, that is continuous relative to the patch topologies?
There appears to be no simple characterisation of patch continuity. Here we set down

(without proof) what is known.
First of all we take the simple way out.

Definition 4.4.1. We say a continuous map

T
φ

- S

converts compact saturated sets if φ←(Q) ∈ QT whenever Q ∈ QS. �

Thus if φ converts compact saturated sets then it is certainly patch continuous. But
presumably this sufficient condition for patch continuity is not necessary. Some relevant
information can be found in [6].

Let

A
f ∗

-�
f∗

B

be a frame morphism with its right adjoint. In general f∗ preserves arbitrary infima, but
need not preserve suprema. We look at those morphisms for which f∗ preserves certain
suprema.

Definition 4.4.2. For a frame morphism f ∗ ` f∗ (as above) the right adjoint f∗ is
(Scott)-continuous if

f∗(
∨

Y ) =
∨

f∗[Y ]

for each directed subset Y of B. �



4.4. FUNCTORIAL PROPERTIES OF THE POINT-SENSITIVE PATCH CONSTRUCTION37

Each continuous map

T
φ

- S

gives a frame morphism

OS
φ∗

-
�

φ∗
OT

between the topologies. We may impose the extra condition of (Scott)-continuity on φ∗.
Of course, this should not be confused with the given continuity of φ.

Lemma 4.4.3. Let φ be a continuous map, as above, and suppose the space T is sober.
If φ∗ is (Scott)-continuous, then φ converts compact saturated sets, and hence φ is patch
continuous.

We need not prove this here. However, a related result will be discussed in Section 7.2.
It is clear that the (Scott)-continuity of φ∗ is something we should look out for. The

following charactersiation is given by Hofmann and Lawson in [6].

Theorem 4.4.4. Let φ be a continuous map, as above, and suppose both the spaces S
and T are sober. Then φ∗ is (Scott)-continuous precisely when both

• φ converts compact open sets
• Y ∈ CT =⇒ ↓φ[Y ] ∈ CS

hold.

Again the details of this proof are not needed here.
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Chapter 5

The full assembly

Each frame A has attached to it a second frame

A - NA

its full assembly. This is an important gadget for understanding and analysing the struc-
ture of A. In this and the next chapter we gather together all the relevant results and
properties of the assembly. Some results are standard, some results are not new but not
as well-known as they should be, and one or two results are new. In this chapter we
concentrate on the non-functorial properties.

5.1 Nuclei and related gadgets

The nuclei and related operators of a frame can tell us a lot about the structure of the
frame. In this section we gather together all the information we need about these gadgets.
However, this is not intended to be a comprehensive account of these matters, so certain
well known results will be omitted because they are not needed here.

Definition 5.1.1. Let A be a frame.
(a) An inflator on A is a function

j : A - A

which is inflationary and monotone. That is

x ≤ jx x ≤ y =⇒ jx ≤ jy

for all x, y ∈ A.
(b) A closure operation on A is an inflator j which is idempotent, that is j2 = j◦j = j.
(c) A pre-nucleus on A is an inflator j such that

j(x ∧ y) = jx ∧ jy

holds for all x, y ∈ A.
(d) A nucleus on A is an pre-nucleus j that is also a closure operation (ie. j2 = j). �

We need some notation for collections of these gadgets. Our main concern is with the
family of all nuclei, but the other families have their uses.

39
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Definition 5.1.2. Let A be a frame. Let

(a) IA be the collection of all inflators on A,

(b) PrA be the collection of all pre-nuclei on A,

(c) NA be the collection of all nuclei on A. �

The notation PrA might look a little odd, but we reserve PA for a more important
gadget attached to A. An analysis of the gadget PA, which is constructed in Chapter 7
is the central topic of this thesis.

Each family IA, PrA, NA is partially ordered by the pointwise comparison

j ≤ k ⇐⇒ (∀x ∈ A)[jx ≤ kx]

(for members j, k of the family). It is easily checked that IA and PrA are closed under
composition. NA, however, is not.

The collection of all nuclei is an important attribute of a frame. Let’s look at how
nuclei naturally arise from frames.

Lemma 5.1.3. For each frame morphism

A
f

- B

the kernel, ker(f), is a nucleus on A.

Proof. We have

ker(f) = f∗ ◦ f ∗

where f ∗ = f and f ∗ a f∗. On general grounds ker(f) is a closure operation. We are
given that f ∗ is a ∧-morphism. Also, for x, y ∈ B and a ∈ A we have

a ≤ f∗(x ∧ y) ⇐⇒ f ∗a ≤ x ∧ y
⇐⇒ f ∗a ≤ x and f ∗a ≤ y

⇐⇒ a ≤ f∗x and a ≤ f∗y

⇐⇒ a ≤ f∗x ∧ f∗y

to show that f∗ is a ∧-morphism. Thus the composite f∗ ◦ f ∗ is a ∧-morphism to give
the required result.

The kernel of each frame morphism is a nucleus. Conversely, each nucleus is the kernel
of an essentially unique surjective morphism. To see this let j be an arbitrary nucleus in
the frame A. Let

Aj = {a ∈ A | ja = a} = j[A]

be the set of fixed points of j or, equivalently, the set of values of j. This is a subset of
A and so inherits a comparison from A. In fact, Aj is much more than a poset.

The following result is standard (see, for example, Section II.2 of [9]) so we indicate
only the important points of the proof. The final part requires the the result that NA is
a frame which we will prove later in Section 6.1.
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Theorem 5.1.4. Let j be a nucleus on the frame A.
(a) The fixed set Aj has finite infima and arbitrary suprema. The infima are the same

as in A and suprema are given by ∨
j

X = j
( ∨

X
)

for X ⊆ Aj.
(b) The fixed set is a frame. The implication on Aj agrees with that on A, that is

x ⊃j a = x ⊃ a

for a, x ∈ Aj.
(c) The assignment

A
j∗

- Aj

x - jx

is a surjective frame morphsim with ker(j∗) = j.
(d) For each frame morphism

f : A - B

and each nucleus j on A, if j ≤ ker(f) then there is a unique frame morphism

Aj

fj - B

such that

A
f

- B

Aj

fj

-

j∗ -

commutes.

Proof. (a) This is straightforward.
(b) It is sufficient to show

a ∈ Aj

x ∈ A

}
=⇒ (x ⊃ a) ∈ Aj

holds for all a, x ∈ A. (In fact it is sufficient to consider only x ∈ Aj.) Let

y = x ⊃ a

so that
x ∧ y ≤ a

and hence, assuming a ∈ Aj we have

x ∧ j(y) ≤ j(x) ∧ j(y) = j(x ∧ y) ≤ j(a) = a
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to give
j(y) ≤ x ⊃ a = y

as required.
(c) This assignment j∗ is certainly a surjective ∧-morphism. Thus to obtain a frame

morphism it will suffice to show

j∗
( ∨

X
)

=
∨
j

j∗[X]

for X ⊆ A. For each x ∈ X we have

x ≤
∨

X

so that
j(x) ≤ j(

∨
X)

to give ∨
j[X] ≤ j(

∨
X)

and hence ∨
j

j∗[X] = j
( ∨

j[X]
)
≤ j2

( ∨
X

)
= j

( ∨
X

)
= j∗

( ∨
X

)
to give one of the required comparisons. The other comparison is immediate.

For x, y ∈ A we have

y ≤ ker(j∗) ⇐⇒ j∗(y) ≤ j∗(x)

⇐⇒ y ≤ j(x)

to give ker(j∗)x = j.
(d) Since the morphism j∗ is surjective, there can be at most one such fill in morphism

fj. In fact, as a function we must have

fj(a) = f(a)

for each a ∈ Aj. Thus it suffices to show that this fj is a morphism. Of the required
properties only the comparison

fj

( ∨
j

X
)
≤

∨
f [X]

(for X ⊆ Aj) is not immediate.
We have

j ≤ ker(f) = f∗ ◦ f ∗

where f ∗ = f and f ∗ ` f∗. In particular, with X ⊆ Aj and

b =
∨

f [X]

we have
f ∗

( ∨
X

)
=

∨
f ∗[X] = b
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so that
j
( ∨

X
)
≤ ker(f)

( ∨
X

)
= (f∗ ◦ f ∗)

( ∨
X

)
= f∗(b)

to give

fj

( ∨
j

X
)

= f ∗
(
j
(∨

X
))

≤ b

as required.

Let’s look now at the families IA, PrA and NA and their properties. Each is a poset
with the pointwise order and each of these posets is complete as shown by the following
construction.

Definition 5.1.5. Let A be a frame. For a collection F of inflators, pre-nuclei or nuclei
on A, the pointwise infimum of F is the function∧

F : A - A

given by ( ∧
F

)
x =

∧
{fx | f ∈ F}

for each x ∈ A. �

It is straightforward to check that the constructed function
∧
F is an inflator on

A. Furthermore, it is the infimum of F in the poset IA, so there isn’t a conflict of
terminology here. Similarly, the pointwise infimum of a collection of pre-nuclei or nuclei
is the infimum in PrA or NA respectively.

Lemma 5.1.6. For a frame A the posets IA, PrA and NA are closed under pointwise
infima, and these form the infima in the posets.

Proof. Much of this is routine. Let’s look at the two crucial points.
Consider F ⊆ PrA. We show( ∧

F
)
x ∧

( ∧
F

)
y ≤

( ∧
F

)
(x ∧ y)

for x, y ∈ A. But( ∧
F

)
x ∧

( ∧
F

)
y =

∧
{fx | f ∈ F} ∧

∧
{gy | g ∈ F}

=
∧
{fx ∧ gy | f, g ∈ F}

≤
∧
{hx ∧ hy | h ∈ F}

=
∧
{h(x ∧ y) | h ∈ F}

=
( ∧

F
)
(x ∧ y)

as required. Here the penultimate step uses the fact that each h ∈ F is a pre nucleus.

Consider F ⊆ NA. We show that
( ∧

F
)

is idempotent, that is(∧
F

)2

x ≤
(∧

F
)
x
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for each x ∈ A. For (∧
F

)2

x =
∧
{f

((∧
F

)
x
)
| f ∈ F}

≤
∧
{f(gx) | f, g ∈ F}

≤
∧
{h2x | h ∈ F}

=
∧
{hx | h ∈ F}

=
( ∧

F
)
x

as required. Here the penultimate step uses the fact that each h ∈ F is idempotent.

Infima are straightforward and can be handled pointwise. Suprema are not so amenable.
Remember that a subset F ⊆ IA is directed if it is non-empty and for each f, g ∈ F
there is some h ∈ F with f, g ≤ h.

Definition 5.1.7. Let A be a frame. For a directed collection F of inflators on A, the
pointwise supremum of F is the function∨̇

F : A - A

given by (∨̇
F

)
x =

∨
{fx | f ∈ F}

for each x ∈ A. �

This construction does not have the same nice properties as the pointwise infimum.
First of all, in this case F is required to be a directed set. We could have made the
same definition for an arbitrary collection of inflators F , and indeed IA is closed under
arbitrary pointwise suprema. However, this is not the case for pre-nuclei.

Lemma 5.1.8. For any frame A, the posets IA and PrA are closed under directed
pointwise suprema, and these form the suprema of directed subsets in the posets.

In the next construction we pass through an initial section of the ordinals Ord. Later
we will see that the ordinals needed are an important measure of the complexity of the
situation under consideration.

Definition 5.1.9. Let f be an inflator on the frame A, that is f ∈ IA. The ordinal
iterates

(fα | α ∈ Ord)

of f are generated by

f 0 = idA fα+1 = f ◦ fα fλ =
∨
{fα | α < λ}

for every ordinal α and limit ordinal λ. �
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Notice that this construction produces an ascending chain of inflators. Since IA is
closed under composition each successor step returns an inflator. Also

α ≤ β =⇒ fα ≤ fβ

so each limit leap returns an inflator. Let’s give these observations a bit of status, and
add something extra.

Lemma 5.1.10. Let f be an inflator on the frame A. Then for each ordinal α the iterate
fα is an inflator. Furthermore, if f is a pre-nucleus then each fα is also a pre-nucleus.

Proof. Only the last part needs some justification. Furthermore, since pre-nuclei are
closed under composition, only the limit case fλ is not immediate. For that we have

fλx ∧ fλy =
∨
{fαx | α < λ} ∧

∨
{fβy | β < λ}

=
∨
{fαx ∧ fβy | α, β < λ}

≤
∨
{fγx ∧ fγy | γ < λ}

=
∨
{fγ(x ∧ y) | γ < λ}

= fλ(x ∧ y)

to give the required result.

On cardinality grounds, for each inflator f there is at least one ordinal α with
fα+1 = fα. But then fβ = fα for all β ≥ α. We give the smallest such ordinal a
special status.

Definition 5.1.11. For each inflator f on a frame A the closure ordinal of f is the least
ordinal ∞ such that f∞+1 = f∞. We call f∞ the closure of f . �

By construction f∞ is a closure operation. Furthermore, if f is a pre-nucleus then
f∞ is a nucleus. This closure f∞ has a special relationship to f .

Lemma 5.1.12. Let f be an inflator on the frame A. Then f∞ is the smallest closure
operation above f . If f is a pre-nucleus then f∞ is the smallest nucleus above f .

Proof. Suppose f ≤ g for some closure operation g. Then

f∞ ≤ g∞ = g

as required.
If f is a pre-nucleus then by Lemma 5.1.10 so is f∞. A pre-nucleus which is also a

closure operation is a nucleus.

Some examples to illustrate some of the content of this construction can be found in
Section 5.4.

This construction allows us to find the suprema in NA of directed collections of nuclei.
To find suprema of arbitrary collections of nuclei, we need to do a little more work.
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Definition 5.1.13. For J ⊆ NA let J◦ be the compositional closure of J , ie. the set of
all

j1 ◦ · · · ◦ jm
for j1, . . . , jm ∈ J . �

Notice that J◦ will not in general be a subset of NA since the set of all nuclei is not
closed under composition (for j1, j2 ∈ NA, j1◦j2 need not be idempotent). It is, however,
a subset of PrA. Notice also that j1 ◦ j2 ≥ j1, j2 and hence J◦ is directed, allowing us to
take the pointwise supremum.

Lemma 5.1.14. Let A be a frame. For J ⊆ NA,∨
J =

(∨̇
J◦

)∞
is the supremum of J in NA.

Proof. We have already seen that
(∨̇

J◦
)∞

∈ NA. It is also clear that(∨̇
J◦

)∞
≥ j

for all j ∈ J . It remains to show that this is the least upper bound for J . Suppose that

for some g ∈ NA we have j ≤ g for all j ∈ J . Then
(∨̇

J◦
)
≤ g in PrA and hence(∨̇

J◦
)∞

≤ g in NA as required.

All this shows that the full assembly NA is a complete lattice. In Section 6.1 we will
see that it is a frame in its own right, with other interesting properties.

5.2 The u, v and w nuclei

The analysis of the assembly NA of a frame A makes use of some rather simple nuclei.
For each a ∈ A the sections

[a,>] [⊥, a]

are frames and the assignments

A - [a,>] A - [⊥, a]
x - a ∨ x x - a ∧ x

are frame morphisms. The set of

A¬¬ = {x ∈ A | ¬¬x = x}

is a complete boolean algebra and the assignment

A - A¬¬

x - ¬¬x
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is a frame morphism. In particular, the composite

A - [a,>] - [a,>]¬¬

is a frame morphism.
The kernel of each of these morphisms is a nucleus on A.
These nuclei are crucial to the constructions in this thesis.

Definition 5.2.1. Let A be a frame with a ∈ A. The functions ua, va and wa on A are
given by

uax = a ∨ x vax = (a ⊃ x) wax = (x ⊃ a) ⊃ a

for each x ∈ A. �

The functions ua and va are the kernels of the morphisms

A - [a,>] A - [⊥, a]

respectively. Notice how the kernel of the second morphism uses the implication on A,
not the meet as might be expected.

The function wa is the kernel of the composite morphism

A - [a,>] - [a,>]¬¬

which, of course, uses the negation on [a,>], not that on A. However, for the particular
case a = ⊥ we see that w⊥ is just double negation on A.

These remarks give the following, which can also be proved directly.

Lemma 5.2.2. For each frame A and a ∈ A, the functions ua, va and wa are nuclei
on A.

Proof. It is trivial to check the requirements for ua and va; to prove that wa is a nucleus
takes a little more work.

First we need several simple properties of the implication. Recall that by definition

z ≤ (x ⊃ a) ⇐⇒ z ∧ x ≤ a

(for a, x, z ∈ A). As a particular case we have
(1) a ≤ (x ⊃ a)

and we check that
(2) x ∧ (x ⊃ a) = x ∧ a

holds. Observe that (1) gives
x ∧ a ≤ a ∧ (x ⊃ a)

so it suffices to show the converse comparison. To do this let

z = x ∧ (x ⊃ a)

so that z ≤ x and hence
z = z ∧ x ≤ a

thus z ≤ x ∧ a as required.
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From (2) we have
x ∧ (x ⊃ a) ≤ a

so that the definition of ⊃ gives
x ≤ wa(x)

to show that wa is inflationary.
Next we check
(3) x ≤ y =⇒ (y ⊃ a) ≤ (x ⊃ a)

(for a, x, y ∈ A). To see this let z = (y ⊃ a) so that, assuming x ≤ y, we have

z ∧ x ≤ z ∧ y ≤ a

as required.
Two uses of (3) shows that wa is monotone.
Since wa is inflationary we have

x ≤ wa(x)

and hence
wa(x) ⊃ a ≤ x ⊃ a

by (3). In fact
(4) wa(x) ⊃ a = x ⊃ a

holds since

x ⊃ a ≤ wa(x ⊃ a) = wa(x) ⊃ a

where the equality follows by unravelling the construction of both compounds.
Two uses of (4) shows that wa is idempotent, and hence is a closure operation.
To prove now that wa is a nucleus it suffices to show that

wa(x) ∧ wa(y) ≤ wa(x ∧ y)

for x, y ∈ A. To this end let

z = wa(x) ∧ wa(y) ∧ (x ∧ y ⊃ a)

so that z ≤ a will give the required result. We have

z ∧ (x ⊃ a) ≤ a z ∧ (y ⊃ a) ≤ a z ∧ x ∧ y ≤ a

which we use in reverse order. The third gives

z ∧ x ≤ y ⊃ a

so that
z ∧ x ≤ z ∧ (y ⊃ a) ≤ a

by the second, giving
z ≤ x ⊃ a

and thus
z ≤ z ∧ (x ⊃ a) ≤ a

by the first.
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These nuclei will be used over and over again in our analysis. Here we take some time
to obtain their key properties. Some of the results we will state without proof.

Lemma 5.2.3. For wa as defined above

wa(x ⊃ a) = (x ⊃ a)

for every a ∈ A.

Proof. We have shown wa is a nucleus so

(x ⊃ a) ≤ wa(x ⊃ a)

is immediate. To show the converse inequality we observe that

x ∧ wa(x ⊃ a) ≤ wa(x) ∧ wa(x ⊃ a)

= wa(x ∧ (x ⊃ a))

≤ wa(a) = a

which is sufficient to prove the result.

Certain compounds are easy to handle.

Lemma 5.2.4. For every a, b ∈ A the relations

ua ∨ ub = ua∨b ua ∧ ub = ua∧b

va ∨ vb = va∧b va ∧ vb = va∨b

hold. The suprema and infima on the left of each equality are calculated in NA.

The top left part of this result can be strengthened. For each subset X ⊆ A we have∨
{ux | x ∈ X} = u∨

X

and hence the assignment

A - NA

a - ua

is an injective frame morphism.

Lemma 5.2.5. The nuclei ua and va are complementary in NA; in other words

ua ∨ va = >NA ua ∧ va = ⊥NA

for every a ∈ A.

This shows that each element of a frame becomes complemented in its assembly. In
the following chapter, Theorem 6.2.2 characterises the assembly as the universal comple-
mentation process.

Certain comparisons with u, v or w nuclei are easy to check.
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Lemma 5.2.6. The equivalences
(a) ua ≤ j ⇐⇒ a ≤ j⊥
(b) va ≤ j ⇐⇒ ja = >
(c) j ≤ wa ⇐⇒ ja = a

hold for each nucleus j on A.

In general
j ∨ k = (j ◦ k)∞

for j, k ∈ NA and the closure ordinal can be large. Sometimes we know it is not.

Lemma 5.2.7. If j, k ∈ NA satisfy

j ◦ k ≤ k ◦ j

then
k ∨ j = k ◦ j

holds in NA.

Combining with a u or v nucleus is easy.

Corollary 5.2.8. The relations
(a) ua ∨ j = j ◦ ua

(b) j ∨ va = va ◦ j
hold for all a ∈ A, j ∈ NA.

In general a nucleus is determined by the elements it fixes. It can also be handled by
the intervals it collapses.

Lemma 5.2.9. Let A be a frame. For each pair of elements a ≤ b the nucleus va ∧ ub is
the least one which collapses the interval [a, b].

Finally for this section we show how nuclei can be represented in terms of the basic
u, v and w nuclei.

Lemma 5.2.10. Let A be a frame. Each nucleus j on A can be represented by the
following.

(a) j =
∨
{vx ∧ ujx | x ∈ A}

(b) j =
∧
{wja | a ∈ A}

Both of these representations are important tools in the analysis of arbitrary nuclei.

5.3 Spatially induced nuclei

For a spatial frame A = OS there is a class of nuclei which contains all the u and v nuclei
described in Section 5.2 and many more as well. These capture the “spatial content” of
OS in a sense to be explained shortly.

Definition 5.3.1. Let S be a topological space. For each E ∈ PS we set

[E]U = (E ∪ U)◦

for each U ∈ OS to obtain a function on OS. �
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It is not too hard to see that [E] is a nucleus on the frame OS. For instance, let

V = [E]2U

(for U ∈ OS). Then

V = (E ∪ [E]U)◦ ⊆ (E ∪ E ∪ U)◦ = (E ∪ U)◦ = [E]U

to show that [E] is idempotent. The other required properties are just as easy to check.

Definition 5.3.2. For a topological space S, a nucleus on OS is spatially induced if it
has the form [E] for some E ⊆ S. �

Shortly we will obtain some of the properties of these special nuclei, but before that
we ought to explain the terminology “spatially induced”.

Each continuous map

T
φ

- S

between spaces gives a frame morphism

OS
φ←

- OT

between the topologies. This has a kernel ker(φ←) characterised by

V ⊆ ker(φ←)U ⇐⇒ φ←V ⊆ φ←U

for U, V ∈ OS. What is this nucleus?

Theorem 5.3.3. Let φ be a continuous map, as above. Let E = S−φ[T ], the complement
of the range of φ. Then ker(φ←) = [E].

Proof. For each U, V ∈ OS we have

V ⊆ ker(φ←)U ⇐⇒ φ←V ⊆ φ←U

⇐⇒ (∀t ∈ T )[φt ∈ V =⇒ φt ∈ U ]

⇐⇒ (∀s ∈ S)[s ∈ V ∩ φ[T ]← =⇒ s ∈ U ]

⇐⇒ (∀s ∈ S)[s ∈ V =⇒ s ∈ E ∪ U ]

⇐⇒ V ⊆ E ∪ U

to give the required result.

This shows how a “spatially induced” frame morphism gives rise to a spatially induced
nucleus. Conversely every spatially induced nucleus arises in this way. To see this consider
any space S and subset E ⊆ S. Let T = S − E carry the subspace topology, so the
insertion

T
φ

- S

is continuous. Then
S − φ[T ] = E

and hence [E] is the kernel of the embedding.
On a spatial frame, we can determine explicitly the implication operation.
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Lemma 5.3.4. Let S be a topological space. The implication on the spatial frame OS is
given by

W ⊃M = (W ′ ∪M)◦

for every W,M ∈ OS.

Proof. For every U,W,M ∈ OS we have

U ⊆ (W ⊃M) ⇐⇒ U ∩W ⊆M ⇐⇒ U ⊆ (W ′ ∪M)

since U is open. This gives the result.

Each frame carries the u and v nuclei. What are these for a topology?

Lemma 5.3.5. Let S be a topological space. We have

uW = [W ] vW = [W ′]

for each W ∈ OS.

Proof. (a) For W as above and M ∈ OS we see that

uW (M) = W ∪M = (W ∪M)◦ = [W ]M

as required.

(b) Suppose again that M ∈ OS. By Lemma 5.3.4 the implication on OS is given by
W ⊃M = (W ′ ∪M)◦. This gives

vW (M) = (W ′ ∪M)◦ = [W ′]M

as required.

Each subset E of a space S determines a nucleus E on the topology. However, the
nucleus [E] need not determine E.

Recall that as well as the interior E◦ and closure E− of E we also have the front
interior E2 and front closure E=.

This next result shows that for each space S there is an insertion

OfS - NOS

E - [E]

from the front topology into the assembly of the parent topology. The significance of this
will be explained in Chapter 6.

Lemma 5.3.6. Let S be a topological space. For arbitrary subsets D,E of S, we have
[D] = [E] if and only if D and E have the same front interior. In other words

[D] = [E] ⇐⇒ D2 = E2

for all D,E ∈ PS.
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Proof. (⇐=) We show that [D] = [D2]. The inequality [D2] ≤ [D] is immediate from
D2 ⊆ D.

To get the reverse inequality, suppose we have V ⊆ (D∪U) for open sets U, V ∈ OS.
We will show that V ⊆ (D2 ∪ U).

Since V ⊆ (D ∪U), we see that V ∩U ′ ⊆ D. As V ∩U ′ is a front open set, this gives
V ∩ U ′ ⊆ D2, and hence V ⊆ D2 ∪ U as required.

This shows that (D ∪ U)◦ = (D2 ∪ U)◦ and hence that [D]U = [D2]U for all open
sets U .

(=⇒) We just need to show

[D] ≤ [E] =⇒ D2 ⊆ E2

which is enough to prove the result.
Suppose that [D] ≤ [E]. The sets U ∩ p− (for U ∈ OS and p ∈ S) form a base for the

front topology. Hence

p ∈ D2 =⇒ (∃U ∈ OS)[p ∈ U ∩ p− ⊆ D]

=⇒ (∃U ∈ OS)[p ∈ U ⊆ D ∪ p−′]
=⇒ p ∈ [D]p−

′ ⊆ [E]p−
′ ⊆ E ∪ p−′

=⇒ p ∈ E

and so D2 ⊆ E, which gives D2 ⊆ E2 since D2 is front open.

5.4 The Cantor-Bendixson example

In this section we first set up a well-known point-sensitive construction (the Cantor-
Bendixson analysis of a space) and then indicate how it can be generalised to the point-
free setting. We state various results, mostly without proof. As we will see, these are
intimately connected with the properties of the full assembly NA of a frame A.

This material is not essential for the central topic of the thesis, the study of the
patch assembly PA of a frame A. It is included here because later we develop somewhat
analogous, and quite new, methods which help with the study of PA. Furthermore, some
of the results give a nice contrast between the properties of N and that of P .

Let us recall one way of setting up the Cantor-Bendixson analysis of a space S. To
avoid a bit of silliness we assume S is T0.

For a closed set X ∈ CS a point x ∈ X is isolated in X if

X ∩ U = {x}

for some open set U ∈ OS. (If S is not T0 this definition doesn’t do what we want it to.)
Let

lim(X)

be the set of limit points of X, the set of those x ∈ X which are not isolated in X. We
find that lim(X) is a closed subset of X with

∅ ⊆ lim(X) ⊆ X
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and both extremes can occur. We have

X is discrete ⇐⇒ lim(X) = ∅

X is perfect ⇐⇒ lim(X) = X

where the first is a trivial observation and the second is the definition of ‘perfect’.
Trivially lim is a deflationary and monotone operation on CS. In the standard way

we can form its ordinal iterates. Thus for each X ∈ CS we set

lim0(X) = X limα+1(X) = lim (limα(X)) limλ(X) =
⋂
{limα(X) | α < λ}

for each ordinal α and limit ordinal λ.
As usual, for each space S, there is a smallest ordinal ∞ with

lim∞+1 = lim∞

and this is the CB-rank of the space.
For each X ∈ CS

per(X) = lim∞(X)

is the perfect part of X, that is the largest perfect subset of X. We say X is scattered if
per(X) = ∅.

More often than not these operations are used only for X = S. We write

S(α) = limα(S)

as a convenient shorthand.
A property of the operator lim that is not often observed (but is easy to prove) is

lim(X ∪ Y ) = lim(X) ∪ lim(Y )

for X, Y ∈ CS. In particular, its dual complement, the operation

U - lim(U ′)′

(for U ∈ OS) is a pre-nucleus on OS. Thus the process of converting lim into per is
essentially that of converting a pre-nucleus into its closure, and the CB-rank is the length
of that process.

This pre-nucleus can be set up on any frame A. For elements a, x ∈ A with a ≤ x we
say the interval [a, x] is boolean if, as a frame, it is complemented. That is, if for each
a ≤ y ≤ x there is some a ≤ z ≤ x with a = y ∧ z and y ∨ z = x.

Definition 5.4.1. Let A be a frame. For each a ∈ A let B(a) be the set of x ∈ A where
[a, x] is boolean, and let

der(a) =
∨

B(a)

to obtain an operation der on A. �

It turns out that der(a) ∈ B(a) that is [a, der(a)] is the unique largest boolean interval
above a.

Lemma 5.4.2. For each frame A the operation der is a pre-nucleus on A.
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This result is not hard to prove, but the details are not important here. The following
result shows that der is not a mere curiosity.

Lemma 5.4.3. For each T0 space S we have

der(U) = lim(U ′)′

for each U ∈ OS.

For this reason der is called the CB-derivative on A, and its closure der∞ is the
CB-nucleus on A.

The first part of the next result is immediate from the definition. The proof of the
second part is more involved.

Theorem 5.4.4. We have

A is boolean ⇐⇒ der(⊥) = >

NA is boolean ⇐⇒ der∞(⊥) = >
for each frame A.

For a T0 space S this says that OS is boolean precisely when S is discrete (which is
trivial) and NOS is boolean precisely when S is scattered (which is not).

5.5 Admissible filters and fitted nuclei

Each nucleus on a frame gives us a filter but this is not a bijective correspondence.

Definition 5.5.1. (1) Let A be a frame. For an element a ∈ A and nucleus j ∈ NA we
say that j admits a if ja = >.

(2) Let ∇(j) be the set of elements admitted by the nucleus j. Notice that ∇(j) is a
filter on A.

(3) Let A be a frame. A filter on A is admissible if it has the form ∇(j) for some
j ∈ NA.

(4) The relation
j ∼ k ⇐⇒ ∇(j) = ∇(k)

is an equivalence relation. We call the equivalence classes blocks.
(5) A nucleus is fitted if it is the least member of its block. �

There is a one to one correspondence between blocks and fitted nuclei, as shown by
the following result.

Lemma 5.5.2. Let A be a frame. Each block of nuclei has a least member.

Proof. Let F be an admissible filter on A, and let

B = {j | j ∈ NA,∇(j) = F}

so B is the collection of all nuclei that admit exactly the set F . Remembering that infima
are computed pointwise in NA, let k =

∧
B. We claim that k ∈ B, giving us our least

element.
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Suppose a ∈ F . Then by definition ja = > for every j ∈ B. This immediately gives
ka = >, so that a ∈ ∇(k). This shows that ∇ ⊆ ∇(k). The other inclusion comes from

k ≤ j =⇒ ∇(k) ≤ ∇(j) = F

where j is any member of B. Thus ∇(k) = F and hence k ∈ B as required.

Some examples of admissible filters are easy to find.

Lemma 5.5.3. Every principal filter is admissible.

Proof. Let F be the principal filter {x | x ≥ a} for some a ∈ A. Then the nucleus j = va

admits F .

Not every filter is admissible. For instance, suppose A is Boolean. Then each nucleus
j has the form ua for some a ∈ A, or equivalently va for some (different) a ∈ A. Then
every admissible filter ∇(j) is principal and when A is infinite there are non-principal
filters.

The following result is Lemma 2.4(ii) of [10].

Lemma 5.5.4. Let A be a frame. Every (Scott) open filter on A is admissible.

Proof. Let F be an open filter on A and let

f =
∨̇
{va | a ∈ F}

so that for some ordinal ∞ we have vF = f∞, and this is the least nucleus that admits
F so that F ⊆ ∇(f∞). We wish to show that ∇(f∞) ⊆ F . We begin by showing that

fx ∈ F =⇒ x ∈ F (†)

for each x ∈ A.
The supremum

fx =
∨
{vax | a ∈ F}

is directed and F is an open filter so we have

fx ∈ F =⇒ vax ∈ F

for some a ∈ F . Thus a ∈ F and a ⊃ x ∈ F so

x ≥ a ∧ (a ⊃ x) ∈ F

and x ∈ F as required.
Next we prove by ordinal induction that

fαx ∈ F =⇒ x ∈ F

holds for each ordinal α.
The case α = 0 is trivial. The induction step from α to α+ 1 follows from (†). That

just leaves the case for λ a limit ordinal. By definition

fλx =
∨
{fαx | α < λ}
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which is a directed supremum and so

fλx ∈ F =⇒ (∃α < λ)[fαx ∈ F ]

because F is open. By the induction hypothesis this implies that x ∈ F .
Thus

f∞x ∈ F ⇐⇒ x ∈ F

for all x ∈ A. In particular

f∞x = > =⇒ f∞x ∈ F =⇒ x ∈ F

and so ∇(f∞) ⊆ F as required.

Not every admissible filter is open, though.

Example 5.5.5. Consider the filter on PN generated by the set of even numbers. This
is a principal filter and therefore admissible, but it is not open.

Not every filter is admissible, but every filter generates a least admissible filter above
it.

Definition 5.5.6. Let A be a frame. Suppose F is a filter on A. Then let

vF =
∨
{va | a ∈ F}

where the supremum is taken in NA. �

Trivially, the nucleus vF admits each a ∈ F , and so F ⊆ ∇(vF ). It can be checked
that ∇(vF ) is the least admissible filter above F . Furthermore, vF is fitted (the least
member of its block). In fact, a nucleus is fitted precisely when it is a supremum of
v-nuclei.

In some ways these fitted nuclei behave like the v-nuclei. The following should be
compared with the lower part of Lemma 5.2.4.

Lemma 5.5.7. Let A be a frame. The following results hold for all filters F,G and
directed families of filters F on A.

1. vF ∧ vG = vF∩G

2. vF ∨ vG = vF∨G

3.
∨
{vF | F ∈ F} = v⋃

F

In addition to a least element, some blocks also have a greatest element.

Lemma 5.5.8. For each a ∈ A the nucleus wa is the greatest member of its block.

Proof. Suppose j is a companion of wa. It is sufficient to show that ja = a because then
j ≤ wa by Lemma 5.2.6.

Let
x = ja y = (x ⊃ a)

so we have way = y by Lemma 5.2.3. Then

(y ∨ x) ⊃ a = (y ⊃ a) ∧ (x ⊃ a) = (y ⊃ a) ∧ y = a
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to give wa(y ∨ x) = >. But then j(y ∨ x) = > since j and wa are companions. Thus

j(y ∨ a) = j(y ∨ ja) = j(y ∨ x) = >

giving wa(y ∨ a) = >. This gives

(x ⊃ a) = y = way = wa(y ∨ a) = >

and ja = x ≤ a as required.

This little known fact will be important in Chapter 9.
A comparison with a fitted nucleus can be made via its filter. The observation

j ≤ k =⇒ ∇(j) ⊆ ∇(k)

is trivial. When j is fitted we can strengthen this.

Lemma 5.5.9. Let A be a frame. Suppose j ∈ NA is fitted. Then

j ≤ k ⇐⇒ ∇(j) ⊆ ∇(k)

holds for all k ∈ NA.

Proof. Suppose a ∈ ∇(j) ⊆ ∇(k) and let x be some element of A. Set y = vax so that
a ∧ y ≤ x. Hence

y ≤ ky = ka ∧ ky = k(a ∧ y) ≤ kx

which shows that va ≤ k. Thus

j =
∨
{va | a ∈ ∇(j)} ≤ k

as required.

Recall the definition of a fit frame from Section 3.5. There is a relationship between
the separation property fitness and the fitted nuclei.

Theorem 5.5.10. For each frame A the four conditions
1. A is fit
2. each nucleus on A is fitted
3. each u-nucleus on A is alone
4. each u-nucleus on A is minimal in its block

are equivalent.

Proof. (1) =⇒ (2). Suppose A is fit, and suppose there are unfitted nuclei, so there exist
companions j and k with j � k. Then jc � kc for some c ∈ A. Let a = jc, b = kc. Since
A is fit, we can find x and y such that

a ∨ x = > y � b x ∧ y ≤ b

hold. Define z = (y ⊃ b) so that x ≤ z and c ≤ b ≤ z and thus

a ≤ jc ≤ jz x ≤ z ≤ jz



5.6. NUCLEI ASSOCIATED WITH OPEN FILTERS 59

so jz ≥ a ∨ x = > and kz = > since j and k are companions. But since y ∧ z ≤ b we
have ky ≤ kb = b to give

y ≤ ky ≤ b

which contradicts y � b.

(2) =⇒ (3) =⇒ (4) are trivial.

(4) =⇒ (1). Suppose (4) holds for A, and that a � b ∈ A. Then ua � wb (since
ua(⊥) = a but wb(⊥) = b). By assumption, ua is a fitted nucleus, so by Lemma 5.5.9 we
know that

∇(ua) * ∇(wb)

holds. Then there exists some x ∈ A such that

a ∨ x = > wbx 6= >

hold. Let y = x ⊃ b so that

wbx = y ⊃ b 6= >

and y � b. This gives x ∧ y ≤ b as required.

In other words, fitness is a property that greatly simplifies the structure of the assem-
bly.

5.6 Nuclei associated with open filters

In Section 5.5 we saw that every admissible filter of a frame A is associated with a nucleus

vF =
∨
{va | a ∈ F}

and that every nucleus is associated with it’s admissible filter. In Lemma 5.5.4 we saw
that every open filter is admissible.

In this section we take a further look at the nuclei associated with open filters. Recall
from Section 3.4 that on a spatial frame there is a correspondence between compact
saturated sets and open filters.

In constructing the point-free patch assembly in Chapter 7 we need a point-free gadget
to take the place of the compact saturated sets. Open filters are the obvious candidate.

Lemma 5.6.1. Let A be a frame. Then for all open filters F,G and directed collections
F of open filters we have

1. vF ∧ vG = vF∩G

2.
∨
{vF | F ∈ F} = v⋃

F
and F ∩G and

⋃
F are open filters.

Proof. This follows immediately from Lemmas 5.5.7 and 3.2.5.
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Each of the fitted nuclei vF is the supremum over a directed set. In general these are
hard to compute. We take the pointwise supremum

fF =
∨̇
{va | a ∈ F}

(omitting the subscript F where the filter in question is clear) and iterate through the
ordinals to give a sequence

f 0 = id fα+1 = f ◦ fα fλ =
∨
{fα | α < λ}

for every ordinal α and limit ordinal λ. This sequence eventually stabilises at f∞ for
some ordinal ∞.

For reasons that will become apparent in Chapter 8 we will concentrate on the se-
quence obtained by applying each inflator fα to the bottom element of our frame A. We
set

d(0) = ⊥ d(α+ 1) = f(d(α)) d(λ) =
∨
{f(α) | α < λ}

for each ordinal α and limit ordinal λ.
We can do the same thing in a point-sensitive context. Let S be a topological space.

For an open filter F on OS we have

vF =
∨
{va | a ∈ F} =

∨
{[U ′] | Q ⊆ U}

where Q =
⋂
F is the compact saturated set corresponding to F .

This time instead of considering the sequence of opens, it is easier to concentrate on
the complementary closed sets. For Q ∈ QS we use the operation Q̂ on CS given by

Q̂(X) =
⋂
{(X ∩ U)− | Q ⊆ U}

for each X ∈ CS. Then we set

Q(0) = S Q(α+ 1) = Q̂(Q(α)) Q(λ) =
⋂
{Q(α) | α < λ}

to give a descending sequence of closed sets.
This construction is similar to the one used in the previous section in the analysis of

the Cantor-Bendixson example.
On cardinality grounds, this sequence eventually stabilises at some closed set Q(∞).

We know that
Q− ⊆ Q(∞)

since each closed set Q(α) contains Q. A question we will consider in Chapter 8 is whether
we can find conditions that make the difference between Q− and Q(∞) either large or
small and the consequences this has for the frame and its patch assembly.

5.7 Block structure

It is, perhaps, not a surprise that within the full assembly NA of a frame A there can
be some quite complicated blocks. What is a surprise is that this can happen within the
assembly of the topology of what seems to be quite a nice space.
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To illustrate this let’s look at one way of exposing some of the structure of a block.
As usual consider a frame A with S = pt(A). Let F be an open filter on A and let

Q ∈ QS be the corresponding compact saturated set. Thus

a ∈ F ⇐⇒ Q ⊆ U(a)

for a ∈ A. By Lemma 5.5.4 we know that F is admissible. The corresponding block of
NA has a least member vF . It also has other special members.

Consider the quotient
AF = AvF

of A by vF . This has a point space which is easy to locate.

Lemma 5.7.1. For a frame A and Q,F as above, we have Q = pt(AF ).

Proof. The points of AF are those p ∈ S with vF (p) = p. If p ∈ F then vF (p) = >, and
hence p /∈ pt(AF ). Thus pt(AF ) ⊆ Q.

Conversely, consider any p ∈ Q. For each x ∈ F , with y = (x ⊃ p) we have y ∧ x ≤ p
and hence y ≤ p (since x ≤ p requires p ∈ F ). Thus fF (p) = p and hence vF (p) = p, as
required.

This gives us a diagram

OS

A

-

OQ
-

AF

-

-

which we extend.
Each subset T ⊆ S gives us a quotient

A - OS - OT

by viewing T as a subspace of S. It is routine to check that

a -
∧
{p ∈ T | a ≤ p}

is the kernel of this quotient. In particular, the set Q ⊆ S gives an instance of this. We
also use another instance.

By Lemma 3.4.1 the set Q has a set of minimal generators M ⊆ Q, namely the set of
maximal members of A− F . We view M as a subspace of Q to obtain a 3-step quotient

A - AF
- OQ - OM

with kernel given by

wF (a) =
∧
{p ∈M | a ≤ p}

(for a ∈ A). The notation is chosen because of the following result which should be
compared with Lemma 5.5.8
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Lemma 5.7.2. The nucleus wF is the maximum nucleus that admits F .

Proof. Let j be a nucleus that admits F . Every point m ∈ M is fixed by j since m is
maximal and not in the filter F . We know that

ja = > ⇐⇒ a ∈ F

or in other words
ja = > ⇐⇒ (∀m ∈M)[j � m]

(see Lemma 3.4.1). Trivially j(a) = wF (a) = > for a ∈ F . Now suppose a /∈ F . Then
a ≤ m for some m ∈M and

a ≤ m =⇒ ja ≤ jm = m

so that
ja ≤

∧
{p ∈M | a ≤ p} = wF (a)

which proves the result.

Every block in NA has a least member, the corresponding fitted nucleus. Such a block
need not have a greatest member, or even maximal members. However, for an open filter
F the corresponding block

[vF , wF ]

is a bounded interval of NA. This gives us a bounded interval

IF = [vF (⊥), wF (⊥)]

of A. The structure of these blocks are intimately related to the patch properties of A
(and other properties).

For each a ∈ IF let
ja = vF ∨ ua

to produce a nucleus with vF ≤ ja ≤ wF . A simple calculation gives

a ≤ b⇐⇒ ja ≤ jb

for a, b ∈ IF . The implication (⇐=) holds since IF ⊆ AF , and hence a = ja(⊥) for each
a ∈ IF . This gives a frame embedding

IF - [vF , wF ]

a - ja

and hence IF gives an indication of the complexity of the block.
Of course, it could be that vF = wF in which case IF is a singleton. However, we

will produce an example where IF is quite intricate. In fact, we will produce a spatial
example.

Suppose A is spatial, so that A = OS for some sober space S. For Q ∈ QS we have
quotients

OS - (OS)F
- OQ - OM
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which determine the least, vF , and greatest, wF , members of the block, and an interme-
diate member. In this case we have

wF = [M ′]

the spatially induced nucleus. Similarly [Q′] is the intermediate member. Thus we have
an interval

vF ≤ [Q′] ≤ [M ′] = wF

of NOS with a special member [Q′]. It seems that in general, [Q′] can be at either end
or somewhere in the middle. The observation that vF ≤ [Q′] and that these two nuclei
are companions is an important one that we will return to later.

If S is T1 then Q = M but this does not guarantee the interval is simple.

Example 5.7.3. There is a space S which is T1, sober and tightly packed. The space
has a special point ∗ which controls much of the structure. The set
S = S − {∗} is a ‘large’ tree with many ‘large’ subtrees. Let F be the filter on OS given
by Q = {∗}, that is the open neighbourhood filter of the point. Then each ‘large’ subtree
of S produces a member of IF . �

We will return to this in Section 8.6 where we connect it with a different topic. The
example itself is dealt with in Chapter 11 where the precise meaning of ‘large’ is given.
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Chapter 6

Properties of the full assembly

In Chapter 5 we set up most of the basic properties of the assembly of a frame. However,
we omitted what are perhaps the two most fundamental properties, namely that the
assembly is also a frame and the construction is functorial. This chapter corrects that
omission.

6.1 The full assembly is a frame

We know that for a frame A the assembly NA of all nuclei on A is a complete lattice, as
is the larger family PrA of pre-nuclei on A. We make use of PrA.

Lemma 6.1.1. Let A be a frame. For each f ∈ PrA, k ∈ NA there is some l ∈ PrA
such that

f ∧ g ≤ k ⇐⇒ g ≤ l

holds for all g ∈ PrA. Furthermore, l is a nucleus.

Proof. Suppose f ∈ PrA and k ∈ NA. Let G be the set of all g ∈ PrA such that
f ∧ g ≤ k. We show that G is closed under composition. For g, h ∈ G and x ∈ A we have

(f ∧ (g ◦ h))x = fx ∧ g(hx)
≤ f(kx) ∧ g(fx) ∧ g(hx) since f(kx), g(fx) ≥ fx.

= f(kx) ∧ g(fx ∧ hx)
≤ f(kx) ∧ g(kx)
≤ k2x = kx

so that g ◦ h ∈ G.
For f, g ∈ PrA we have f ◦g ≥ f, g and hence any subset of PrA that is closed under

composition is directed.
Now let l =

∨̇
G, so l is the supremum of G in PrA. As yet we do not know that l is

in NA. For each x ∈ A

(f ∧ l)x = fx ∧ lx = fx ∧
∨
{gx | g ∈ G}

=
∨
{fx ∧ gx | g ∈ G}

≤ kx

65
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and hence l ∈ G. Thus l2 ∈ G since G is closed under composition, which gives l2 ≤ l.
But l is inflationary, so l2 = l and l ∈ NA.

Recall that to show that a complete lattice is a frame it suffices to exhibit an impli-
cation operation.

Theorem 6.1.2. For each frame A, the assembly NA is also a frame.

Proof. For f, k ∈ NA we can see that, using the notation of Lemma 6.1.1,

(f ⊃ k) = l

with l ∈ NA and so NA carries an implication and therefore is a frame by Theorem 3.1.3.

The proof of this result in II.2.5 of [9] uses a more explicit construction of the implica-
tion, which provides us with different information. The implication operation is defined
as

(j ⊃ k)a =
∧
{j(x) ⊃ k(x) | x ≥ a}

(for a ∈ A) and then it is proved that this is in fact an implication on NA.

6.2 N is a functor

The construction N that takes each frame to its assembly together with the canonical
embedding

A
nA - NA

a - ua

has some nice properties. In the next main result, Theorem 6.2.2, we show that the
morphism nA universally solves a certain problem, that of complementing elements of A.
Before that we make a couple of observations.

By Lemma 5.2.5, for each a ∈ A the two nuclei ua and va are complementary in NA.
Thus the embedding nA does create complements for elements of A. By Lemma 5.2.10
we have

j =
∨
{uja ∧ va | a ∈ A}

for each j ∈ NA. This ensures that nA is epic.

Lemma 6.2.1. For each frame A and frame morphisms

NA
g

-

h
- B

if g ◦ nA = h ◦ nA then g = h. In other words, nA is epic.
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Proof. Consider such a pair g, h with g ◦ nA = h ◦ nA. Thus

g(ua) = h(ua)

for each a ∈ A. Also
ua ∧ va = ⊥NA ua ∨ va = >NA

from which
g(va) = h(va)

follows by a simple calculation. Now consider j ∈ NA. We have

j =
∨
{uja ∧ va | a ∈ A}

so that

g(j) =
∨
{g(uja) ∧ g(va) | a ∈ A}

=
∨
{h(uja) ∧ h(va) | a ∈ A}

= h(j)

to give g = h as required.

This epic property deals with the routine part of the proof of the following.

Theorem 6.2.2. For each frame A the morphism

A
nA - NA

universally solves the complementation problem for A. That is, for each morphism

A
f

- B

such that fa has a complement in B for every a ∈ A, there exists a unique morphism f ]

such that the diagram

A
f

- B

NA

f ]

-

nA -

commutes.

Proof. Since nA is epic, there can be at most one such morphism f ]. We produce this
and its adjoint f[.

For each j ∈ NA set

f ](j) =
∨
{f(jx) ∧ f(x)′ | x ∈ A}

where f(x)′ is the complement of f(x) in B. Trivially the map

NA
f ]

- B
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is monotone, and an easy calculation shows that it is a ∧-morphism.
For b ∈ B we have a composite frame morphism

A
f

- B - [b,>B]

to an interval of B. Let 〈b〉 be the kernel of this composite, so that

y ≤ 〈b〉x⇐⇒ b ∨ f(y) ≤ b ∨ f(x) ⇐⇒ f(y) ≤ b ∨ f(x)

for all x, y ∈ A. We show that the monotone map

NA �
f[

B

〈b〉 � b

is the right adjoint of f ]. In other words we show

f ](j) ≤ b⇐⇒ j ≤ 〈b〉

for j ∈ NA and b ∈ B.
Suppose f ](j) ≤ b, consider any x ∈ A and let y = jx. We have

f(y) ∧ f(x)′ ≤ f ](j) ≤ b

so that
j(x) = y ≤ f(y) ≤ b ∨ f(x)

to give one implication.
For the converse suppose j ≤ 〈b〉, and consider any x ∈ A. We have

jx ≤ 〈b〉x

so that
f(jx) ≤ b ∨ f(x)

to give
f(jx) ∧ f(x)′ ≤ b

(since f(x) is complemented in B). Letting x range over A gives

f ](j) ≤ b

as required.
This shows that f ] is a frame morphism.
Finally, for a, x ∈ A we have

f(a ∨ x) ∧ f(x)′ = (f(a) ∨ f(x)) ∧ f(x)′ = f(a) ∧ f(x)′ ≤ f(a)

and
f(a ∨ >) ∧ f(>)′ = f(a)

so that
(f ] ◦ nA)(x) = f ](ua) =

∨
{f(a ∨ x) ∧ f(x)′ | x ∈ A} = f(a)

to show that the required triangle does commute.
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Theorem 6.2.3. The assignment

A - NA

is the object part of a functor on Frm and the morphism

A
nA - NA

is a natural transformation. In other words, for every A,B ∈ Frm and every frame
morphism f , the diagram

A
nA- NA

B

f
?

nB

- NB

Nf
?

commutes for some unique morphism Nf .

Proof. In the above diagram, the image of every element of A under nB ◦ f is comple-
mented in NB, and so by Theorem 6.2.2 there is a unique morphism,

NA
Nf

- NB

which makes the above square commute.
We just need to check that this is a functor; that is, for

A
f

- B
g

- C

we have N(g ◦ f) = Ng ◦Nf . But

A
nA- NA

B

f
? nB- NB

Nf
?

C

g
? nC- NC

Ng
?

commutes, so Ng◦Nf must be the unique arrow which makes the outer square commute.
Hence N(g ◦ f) = Ng ◦Nf as required.

Theorem 6.2.3 gives us the mere existence of a morphism Nf . A closer look gives us
some more concrete information.

Corollary 6.2.4. For f a frame morphism from A to B

1. (Nf)ua = ufa

2. (Nf)va = vfa
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for every a ∈ A.

Proof. 1. Follows immediately from the above diagram.
2. We know that ua and va are complementary in NA and that Nf is a frame mor-

phism. Hence

ufa ∧ (Nf)va = (Nf)(ua ∧ va) = ⊥

and

ufa ∨ (Nf)va = (Nf)(ua ∨ va) = >

so (Nf)va is the complement of ufa in NA. Hence (Nf)va = vfa as required.

In time we will obtain more information about the behaviour of N .

6.3 The fundamental triangle of a space

In this section we state and prove the crucial result for finding the point space of the full
assembly.

The following lemma is just a special case of Theorem 6.2.2.

Lemma 6.3.1. For each space S there is a unique frame morphism σ such that

OS
nOS - NOS

OfS

σ
�

ι -

commutes.

This is true for any space S, but in practice we almost always use it for the point
space of a frame, which is sober.

The morphism σ is a natural transformation as S varies.
We want a concrete description of σ. To find that we first set up a morphism, also

called σ, and then show it is the fill in morphism of Lemma 6.3.1.

Definition 6.3.2. For a topological space S let σ be the function from NOS to OfS
given by

σj =
⋃
{(jW )−W | W ∈ OS}

for each j ∈ OS. �

To show that this σ is a frame morphism we use a more compact description.

Lemma 6.3.3. For σ as defined in 6.3.2, we have

p ∈ σj ⇐⇒ p ∈ jp−′

for every p ∈ S. Furthermore σ is a ∧-morphism.



6.3. THE FUNDAMENTAL TRIANGLE OF A SPACE 71

Proof. For any p ∈ S if p ∈ σj then

p ∈
⋃
{(jW )−W | W ∈ OS}

so that
p ∈ (jW ) p /∈ W

holds for some open set W . This gives

W ⊆ p−
′

p ∈ jW ⊆ jp−
′

as required.
Conversely suppose that p ∈ jp−′. Then setting W = p−

′
we have

p ∈ jW p /∈ W

so that p ∈ σj.
For j, k ∈ NA we have

p ∈ σ(j ∧ k) ⇐⇒ p ∈ (j ∧ k)p−′ ⇐⇒ p ∈ jp−′ ∩ kp−′ ⇐⇒ p ∈ σj ∩ σk

to show that σ passes across binary meets.

Recall that each E ⊆ S gives us a spatially induced nucleus [E] on OS.

Lemma 6.3.4. For σ as above we have σ([E]) = E2 for every E ∈ PS.

Proof. Let E be any subset of S. For every open set U we have

[E]U − U = (E ∪ U)◦ − U ⊆ E2

and so
σ([E]) =

⋃
{([E]W )−W | W ∈ OS} ⊆ E2

holds.
Now suppose p ∈ E2. Then there exists U ∈ OS such that

p ∈ U ∩ p−′ ⊆ E

which gives p ∈ U ⊆ E ∪ p−′ and so p ∈ [E]p−
′
. Therefore

p ∈ [E]p−
′ − p−

′

and p ∈ σ([E]).

By Lemma 6.3.3 the defined

NOS
σ

- OfS

is at least a ∧-morphism. To show that σ is a frame morphism it suffices to exhibit a
right adjoint. We have already found that.
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Theorem 6.3.5. For each space S the pair of assignments

NOS
σ

-
�

[·]
OfS

form an adjoint pair. Furthermore, σ is a frame morphism.

Proof. We need to check that

σj ⊆ E ⇐⇒ j ≤ [E]

holds for each j ∈ NOS and E ∈ OfS.

Suppose σj ⊆ E. Then for every U ∈ OS and p ∈ S we have

p ∈ jU =⇒ p ∈ (jU)− U or p ∈ U
=⇒ p ∈ σj or p ∈ U
=⇒ p ∈ (E ∪ U)◦

and hence jU ⊆ [E]U . Thus j ≤ [E] as required.

Conversely, suppose that j ≤ [E]. Then σj ⊆ σ([E]). From Lemma 6.3.4 we know
that σ([E]) = E2 for all E ∈ PS. This gives σj ⊆ E2 and thus σj ⊆ E. This shows
that [·] is the right adjoint to σ.

On general grounds any monotone function with a right adjoint passes across arbitrary
suprema (see Section 3.1). It is trivial to check that σ acts appropriately on >NOS and
⊥NOS and is therefore a frame morphism.

Finally we can prove that this morphism σ we want in Lemma 6.3.1.

Lemma 6.3.6. The morphism σ defined in 6.3.2 makes the triangle

OS
nOS - NOS

OfS

σ
�

ι -

commute.

Proof. Suppose that U ∈ OS. Then

(σ ◦ nOS)U = σ([U ]) = U2 = U

as required.

The morphism σ will come in handy later.
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6.4 The point space of the full assembly

This section completes the relationship between the full assembly NOS on a topology
and the front topology OfS.

The following theorem comes from putting the results 6.2.3 and 6.3.1 together.

Theorem 6.4.1. Let A be a frame and let S = ptA. Then the diagram

A
nA - NA

OS

UA

? nOS- NOS

NUA

?

OfS

σOS

?

ι
-

commutes.

We can go further and show that fS is the point space of both NA and NOS. To do
this we need to look at a certain class of nuclei - the w nuclei introduced in Definition 5.2.1.

Before that, we need a name for the composite morphism σOS ◦NUA. We set

ΣA = σOS ◦NUA

and it is easy to show that this is the point space morphism for NA.
The following lemma is extremely important because it identifies the points of the

full assembly. We also need to refer to it when we come to look at the point space of the
patch assembly.

Lemma 6.4.2. For each j ∈ NA the three conditions
(a) j is ∧-irreducible (in NA)
(b) j is two-valued (every value of j is either j⊥ or >)
(c) a = j⊥ is ∧-irreducible (in A) and j = wa.

are equivalent.

Proof. We will prove that (a) =⇒ (b) =⇒ (c) =⇒ (a).
(a) =⇒ (b). Suppose that j is irreducible. We wish to show that j is of the form

jx =

{
> if x � a
a if x ≤ a

where a = j⊥. Notice that this is the only possible form a two valued nucleus can take.
We know that

ux ∧ vx = ⊥NA ≤ j

holds for each x ∈ A. Therefore either ux ≤ j or vx ≤ j. Suppose the former. Then

x = ux⊥ ≤ j⊥ = a
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and hence jx = ja = a. This is only possible when x ≤ a, so suppose x � a. Then

vx ≤ j =⇒ > = vxx ≤ jx

and we see that
x � a =⇒ jx = >

and hence j has the required form.
(b) =⇒ (c). Suppose j is two-valued and x ∧ y ≤ a for some x, y ∈ A. Then we have

jx ∧ jy ≤ j(x ∧ y) ≤ a

by the form of j. Since jx, jy ∈ {a,>} then

jx = a or jy = a

and hence
x ≤ a or y ≤ a

by the form of j. We know that a 6= >, so this shows that a is ∧-irreducible. Now we
just need to show that

wax =

{
> if x � a
a if x ≤ a

whenever a is ∧-irreducible. Suppose that x ≤ a. Then

(x ⊃ a) ⊃ a = > ⊃ a = a

by the properties of ⊃. If x � a then

(x ⊃ a) ∧ ((x ⊃ a) ⊃ a) ≤ a

and x ≤ wax so (x ⊃ a) ⊃ a � a Hence, since a is ∧-irreducible (x ⊃ a) ≤ a and then

(x ⊃ a) ⊃ a = >

as required.
(c) =⇒ (a). We wish to show that wa is irreducible in NA whenever a is irreducible

in A. We have already shown that when a is irreducible then wa is two-valued. We also
have

k ∧ l ≤ wa =⇒ ka ∧ la ≤ waa = a

=⇒ ka ≤ a or la ≤ a

=⇒ k ≤ wa or l ≤ wa

by Lemma 5.2.6. Hence wa is irreducible as required, which completes the proof.

This gives us an inverse pair of bijections between the point space S of a frame A and
the point space T of it’s assembly NA. Thus we have

S
φ

-�
ψ

T

where φ(p) = wp and ψ(m) = m⊥.
So the point space of NA has essentially the same points as S but a different topology.

What is this induced topology?
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Lemma 6.4.3. Let A be a frame with point space S and let T be the point space of the
assembly NA furnished with the point space topology. Then the induced topology on S
that makes

S
φ

-
�

ψ
T

a pair of homeomorphisms is the front topology OfS.

Proof. The typical open sets of S (with the point space topology) are

UA(x) = {p | p ∈ S, x � p}

for x ∈ A. The open sets of T are

UNA(j) = {m | m ∈ T, j � m}

for each nucleus j.
For each j ∈ NA, we have

j =
∨
{vx ∧ ujx | x ∈ A}

and hence the sets
UNA(ux) UNA(vx)

with x ∈ A form a subbase of T , since U(·) is a frame morphism.

Now consider that

φ←UNA(ux) = ψ
(
UNA(ux)

)
= {ψm | ux � m ∈ T}
= {m⊥ | ux � m ∈ T}
= {p | x � p ∈ S}
= UA(x)

using Lemma 5.2.6.
We know that

vx ∧ ux = ⊥ ≤ m vx ∨ ux = >
hold for every x ∈ A,m ∈ T and so exactly one of

vx ≤ m ux ≤ m

holds. In other words
m ∈ UNA(vx) ⇐⇒ m /∈ UNA(ux)

for each m ∈ T, x ∈ A. Hence

φ←UNA(vx) = ψ
(
UNA(vx)

)
= ψ

(
UNA(ux)

′) = UA(x)′

since ψ is a bijective frame morphism.

Similarly, we have ψ←UA(x) = UNA(ux) and ψ←UA(x)′ = UNA(vx) and hence the sets
UA(x) and (UA(x))′ form a subbase for the induced topology on S, which must therefore
be the front topology OfS.
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Chapter 7

The patch assembly

In this chapter we set up and begin to analyse the central gadget of this thesis, the
patch assembly of a frame. We attach to each frame A a certain subframe PA of the
full assembly NA. This point-free construction of PA is motivated by the point-sensitive
construction of the patch space pS of a space S. We will see that POS and OpS are
related and, in some ways, POS is an improvement on pS.

7.1 The construction

Starting from an arbitrary space S the patch space pS is built using

OS QS

the families of open subsets and compact saturated subsets of S. We let

pbase = {U ∩Q′ | U ∈ OS,Q ∈ QS}

to obtain a ∩-closed family of subsets of S. We take pbase as the canonical base of a new
topology on S. Thus OpS is the set of unions of all subfamilies of pbase. These unions,
of course, are calculated in PS.

We use an analogous construction to obtain the patch assembly of a frame. Start-
ing from an arbitrary frame A we calculate within the full assembly NA to produce a
subframe PA of NA. This is the patch assembly of A. We use the families

{ua | a ∈ A} {vF | F an open filter on A}

of members of NA. The first is an isomorphic copy of A in NA and so is an analogue
of OS. By the Hofmann-Mislove results from Section 3.4 the second is a reasonable
analogue of QS.

Definition 7.1.1. For each frame A let

PBase = {ua ∧ vF | a ∈ A, F an open filter on A}

to obtain a ∧-closed family of members of NA. �

Lemmas 5.2.4 and 5.6.1 show that PBase is ∧-closed. By taking, respectively

F = A a = >

we see PBase contains each ua for a ∈ A and each vF for F an open filter on A.

77
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Definition 7.1.2. For a frame A let PA be the set of suprema of all subfamilies of PBase
where these suprema are calculated in NA. This is the patch assembly of A. �

By construction PA is closed under arbitrary suprema. A simple exercise (using
the frame distributive law for NA) shows that PA is ∧-closed, and hence we have the
following.

Theorem 7.1.3. For each frame A the patch assembly PA is a subframe of NA which
includes the canonical image of A.

This result gives us a small diagram

A - PA ⊂ - NA

where the left hand component is an embedding and the right hand component is an
inclusion. Informally we may think of A ⊆ PA ⊆ NA by replacing A by it’s canonical
image. This construction prompts us to ask several questions.

(Q1) Within the interval

A - NA

whereabouts can PA occur?
(Q2) Can

A - PA

be an isomorphism in a non-trivial way?
(Q3) Can PA = NA happen in a non-trivial way?
(Q4) What, if any, is the relationship between this point-free construction and the

point-sensitive construction?
(Q5) What is pt(PA)? Is it just ppt(A)?

This thesis is an analysis of these and related matters. Some of these questions are
answered in full, some only partially.

To conclude this section we give a partial answer to (Q2). The result is taken from
[9] but the proof is an improvement.

Theorem 7.1.4. Suppose A is a regular frame and j is a nucleus on A such that ∇(j)
is open. Then

j = ud

where d = j⊥. In other words, regularity implies that the patch assembly is isomorphic
to the original frame.

Proof. Since A is regular it is fit, so every block is a singleton and it suffices to show that
j and ud are companions. On general grounds ud ≤ j so we just need to prove

jx = > =⇒ d ∨ x = >

for x ∈ A.
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Consider any x ∈ A such that jx = >. Since A is regular, we have

x =
∨
{y | (∃z)[z ∧ y = ⊥ and z ∨ x = >]}

and this is a directed supremum. Since ∇(j) is open, j must send one such y to top, and
we have

jy = > z ∧ y = ⊥ z ∨ x = >
for some y, z ∈ A. This gives

d = j⊥ = jz ∧ jy = jz

and hence
d ∨ x ≥ jz ∨ x ≥ z ∨ x = >

as required.

Recall that the full assembly embedding

A - NA

is an isomorphism precisely when A is boolean. Theorem 7.1.4 shows that the patch
assembly embedding

A - PA

is an isomorphism under more interesting circumstances. In Chapter 8 we will give a vast
improvement on this result by replacing regularity by a much weaker property.

7.2 Functorality matters

The functorial properties of the point-sensitive patch construction are discussed in Sec-
tion 4.4. For a continuous map between spaces

S �
φ

T

to be patch-continuous we simply asked that the inverse image function φ← send compact
saturated sets Q ∈ QS to compact saturated sets φ←(Q) ∈ QT . Each such inverse image
function restricts to a frame morphism φ∗ between the topologies and this has a right
adjoint φ∗.

OS
φ∗

-
�

φ∗

OT

We observed that the (Scott)-continuity of the right adjoint φ∗ ensures that φ is patch-
continuous.

In this section we analyse the functorial properties of the point-free patch construction.
We know that each frame morphism

A
f

- B
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lifts to a morphism Nf between the full assemblies.

A - PA ⊂ - NA

B

f

?
- PB ⊂ - NB

Nf

?

We wish to obtain a morphism

PA
Pf

- PB

between the patch assemblies. For this it seems that we need to impose extra conditions
on f . Again we take the easy way out and use the ‘obvious’ condition.

For a filter F on A the direct image f [F ] need not be a filter on B but the upward
closure

fF = ↑f [F ]

is. However, when F is open this image fF need not be.

Example 7.2.1. Consider the real interval B = [0, 1] as a linearly ordered frame. Let
0 < ? < 1 (say ? = 1

2
) look at

A = {0, ?, 1}
as a subframe and let

A
f

- B

be the insertion.
The filter F = {?, 1} is completely prime (hence open in A). The image

fF = [?, 1]

is not open in B, since
∨

[0, ?) = ?. �

A continuous map need not respect compact saturated sets, and a condition is imposed
to achieve functorality. Similarly a frame morphism need not respect open filters, and so
we impose an extra condition to achieve this.

Definition 7.2.2. A frame morphism

A
f

- B

converts open filters if for each open filter F on A the image fF is open on B. �

This condition gives us what we want in a straightforward way. Recall that

N(ua) = ufa N(va) = vfa N(vF ) = N(vfF )

for each a ∈ A and filter F on A. In particular if f converts open filters then

F open in A =⇒ fF open in B

(by definition), so that

j ∈ PBase(A) =⇒ (Nf)j ∈ PBase(B)

(by a simple calculation), and we have the following.
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Lemma 7.2.3. Suppose the morphism f , as above, converts open filters. Then

j ∈ PA =⇒ (Nf)j ∈ PB

and hence P acts functorially on this class of arrows.

In other words, when f converts open filters we can define Pf to be the restriction of
Nf to PA. This gives a commuting diagram

A - PA ⊂ - NA

B

f

?
- PB

Pf

?
⊂ - NB

Nf

?

and it is immediate that P passes across compositions as it should.
Our contention is that the point-free patch construction P (·) has some relationship

with the point-sensitive patch construction p(·), and is perhaps an improvement. A com-
parison of their actions on arrows illustrates this.

In the next result we consider a frame morphism and its adjoint.

A
f = f ∗

-
�

f∗

B

We also consider a continuous map between spaces

S �
φ

T

and the induced frame morphism

OS
φ∗

-
�

φ∗

OT

with its adjoint.

Theorem 7.2.4. (a) For a frame morphism f ∗ as above, if the right adjoint f∗ is (Scott)-
continuous then f ∗ converts open filters.

(b) For a continuous map φ, as above, the right adjoint φ∗ is (Scott)-continuous
precisely when φ∗ converts open filters.

Proof. (a) We have
f ∗a ≤ b⇐⇒ a ≤ f∗b

for a ∈ A and b ∈ B. Consider an open filter F on A and let Y be a directed subset of
B with

∨
Y ∈ f ∗F . Thus

f ∗a ≤
∨

Y

for some a ∈ F . But now
a ≤ f∗(

∨
Y ) =

∨
f∗[Y ]
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by the hypothesis that f∗ is (Scott)-continuous. Hence, since f∗[Y ] is directed in A we
have a ≤ f∗y for some y ∈ Y . This gives f ∗a ≤ y and hence Y meets fF as required.

(b) Suppose first that φ∗ is continuous. Then, by the previous part we see that φ∗

converts open filters.
Conversely, suppose φ∗ converts open filters, consider any directed W ⊆ OT , and let

V = φ∗

(⋃
W

)
we wish to show

V ⊆
⋃

φ∗[W ]

to get Scott-continuity. Consider any s ∈ V . The neighbourhood filter F of s is given by

U ∈ F ⇐⇒ s ∈ U

(for U ∈ OS). This filter is open, hence so is φF (in OT ). But

W ∈ φF ⇐⇒ φ∗W ∈ F ⇐⇒ s ∈ φ∗W

for each W ∈ OT . In particular, we have
⋃
W ∈ φF , and hence there is some W ∈ W

with W ∈ φF . Thus

s ∈ φ∗W ⊆
⋃

φ∗[W ]

as required.

Consider a continuous map φ as above, and suppose the two spaces S and T are sober.
We have an associated frame morphism φ∗ ` φ∗ between the topologies. Suppose the
right adjoint φ∗ is (Scott)-continuous. Then, by Lemma 4.4.3 the map φ converts compact
saturated sets, and hence is patch continuous. Also, by Theorem 7.2.4 the morphism φ∗

converts open filters. Thus we obtain a pair of frame morphisms

POS
P (φ∗)

- POT OpS
φ∗

- OpT

relating the point-free and the point-sensitive constructs. In the next section we will add
to this connection.

These observations suggest that perhaps the appropriate frame morphisms to use with
the point-free construction P (·) are those which have a continuous right adjoint. This
suggestion is wrong.

Theorem 7.2.5. For each frame A the spatial reflection morphism

A
U

- OS

to the topology of the point space S = pt(A) converts open filters. It need not have a
continuous right adjoint.

Proof. Let F be an open filter on A and let ∇ = UA[F ]. We will show that ∇ is open on
OS. Consider any directed family U taken from OS with

⋃
U ∈ ∇. We must show that

U meets ∇.
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Consider X ⊆ A given by

x ∈ X ⇐⇒ U(x) ∈ U

and so the surjectivity of U(·) gives us

U = {U(x) | x ∈ X}

and X indexes U (perhaps with some repetition). We show that X meets F , and hence
U meets ∇.

Let s be the kernel of U(·). Thus

y ≤ sx⇐⇒ U(y) ⊆ U(x)

and

U(x) = U(sx)

for all x, y ∈ A. In particular

x ∈ X ⇐⇒ sx ∈ X

for x ∈ A. Using this we first check that X is directed. Consider x, y ∈ X. Then
U(x), U(y) ∈ U and hence (since U is directed) we have

U(x), U(y) ⊆ U(z) = U(sz)

for some z ∈ X. Thus sz ∈ X and the defining property of s gives x, y ≤ sz, to produce
the required upper bound in X.

Now let a =
∨
X. We have

U(a) =
⋃
{U(x) | x ∈ X} =

⋃
U

so that U(a) ∈ ∇. Thus

U(a) = U(b)

for some b ∈ F . But now sa = sb ∈ F and since U(sx) = U(x) we have

sx ∈ X ⇐⇒ x ∈ X

and thus ∨
X = a ∈ F

holds. Since F is open, this gives some x ∈ X ∩ F and hence

U(x) ∈ U ∩∇

as required.
To complete the proof we have to produce a frame A where the morphism UA does

not have a continuous right adjoint. This will be given in Example 7.2.7

We need a non-trivial frame with no points. There are some complicated frames of
this kind, but here is a simple way of producing one.
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Lemma 7.2.6. Let S be any T1 sober space with no isolated points, and let (OS)¬¬ be
the boolean algebra of regular open sets of S (the quotient of the frame OS under the
nucelus given by double negation). The frame (OS)¬¬ has no points.

Proof. We view points of (OS)¬¬ as characters

(OS)¬¬
p

- 2

and suppose that there exists such a point, p. Then we can pull it back to a point

OS
¬¬

- (OS)¬¬
p

- 2

of OS. Hence for some p ∈ S we have

p−
′ ∈ pt(OS)

which goes to a point of (OS)¬¬. Hence ¬¬(p−
′
) = {p}◦−′ is a point of (OS)¬¬. But

{p}◦ = ∅ since S has no isolated points, and so ¬¬(p−
′
) = S which is not irreducible in

(OS)¬¬.

For the next example, we need a non-trivial frame with no points. To get this, we
just apply the above Lemma to the space S = R with the metric topology.

Example 7.2.7. Let B be a non-trivial frame with no points. Add a copy of N below
B, so that we have a tail X consisting of ω elements. This forms a frame, A. We claim
that for this frame UA does not have a continuous right adjoint.

To show this, let s be the kernel of the nucleus UA. We call s the spatial nucleus of
A. Notice that

U(x) ⊆ U(a) ⇐⇒ x ≤ sa

for x, a ∈ A. The spatial nucleus takes each element of A to the infimum (in A) of the
points above it.

By way of contradiction suppose U has a continuous right adjoint. Then its kernel s
is continuous (since s is the composite of U and its right adjoint). In other words

s
(∨

X
)

=
∨

s[X]

for each directed subset X of A.
Consider the tail X of A. Then

∨
X = b, the bottom element of B. Thus

s
(∨

X
)

= sb = >

since there are no points (of A) above b. But each element of X is a point of A, hence∨
s[X] =

∨
X = b

which is the contradiction. �

There is a positive side to Theorem 7.2.5 – it enables us to hit UA with the functor
P and so obtain a morphism

PA
P (UA)

- POS

between the associated patch assemblies. We use this in the next section.
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7.3 The full patch assembly diagram

We can put all the connections so far together into one large diagram.

A - PA ⊂ - NA

OS

UA

?
- POS

PUA

?
⊂ - NOS

NUA

?

OpS ⊂ -

-

OfS

σS

?

The top rectangle of this diagram is just the commuting diagram following Lemma 7.2.3.
The lower section

OS ⊂ - OpS ⊂ - OfS

has been dealt with in Section 4.2 and is a consequence of Lemma 4.2.2.
The morphism

NOS
σ

- OfS

is the point space morphism from the full assembly to the topology of its point space,
the front topology. This is dealt with in Section 6.4.

The obvious question is whether there is a morphism that fits between POS and OpS
that makes the resulting cells commute.

Restricting σ to POS will do the trick.

Lemma 7.3.1. Let S be a space with topology OS. For each open filter F on OS we
have Q with F = ∇(Q),

σ(vF ) = Q′

where Q is the corresponding compact saturated set, that is F = ∇(Q).

Proof. We have seen in Section 5.7 that vF and [Q′] are companions and admit the same
elements.

Since vF is the minimum element in its block we have vF ≤ [Q′] and thus

σ(vF ) ⊆ σ([Q′]) = Q′

since Q′ is front open.
To show that Q′ ⊆ σ(vF ), suppose that p ∈ Q′. Then p− ⊆ Q′ by saturation of Q, so

Q ⊆ p−
′
and thus p−

′ ∈ F . Therefore

p ∈ vF (p−
′
) = >

and so p ∈ σ(vF ) by Lemma 6.3.3 giving

Q′ ⊆ σ(vF )

as required.
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Lemma 7.3.2. Let S be a space with topology OS. The restriction of the frame morphism
σ to POS gives a frame morphism π from PA to OpS. Furthermore, the morphism π is
surjective.

Proof. The frame POS is generated by nuclei of the form

[U ] ∧ vF

where U ∈ OS and F is an open filter on OS. We have σ([U ]) = U , since U is open, and
F = ∇(Q) for some Q ∈ QS so that σ(vF ) = Q′ by Lemma 7.3.1. Thus

σ ([U ] ∧ vF ) = U ∩Q′

and these sets form a base for the patch topology OpS.

This gives us the full patch diagram.

A - PA ⊂ - NA

OS

UA

?
- POS

PUA

?
⊂ - NOS

NUA

?

OpS

πS

?
⊂ -

-

OfS

σS

?

The frame morphism π need not be an isomorphism although it seems to be in most
natural examples. However, π is not injective for some of the examples in Chapter 11.
In fact if S is packed then pS = S so

OS -
� POS

composes to give the identity at OS, but π still need not be an isomorphism.



Chapter 8

A hierarchy of separation properties

In this chapter we obtain the vast improvement of Theorem 7.1.4 promised in Section 7.1.
A detailed analysis of the proof of that result leads to an ordinal indexed hierarchy of
separation properties lying between T1 and T2.

8.1 Patch triviality

The point-sensitive patch construction acts on a space to make all the compact saturated
sets closed. On a packed space, where all compact saturated sets are already closed,
it does nothing. How does the point-free patch construction behave when applied to
the topology of a packed space? Does it, as we might initially expect, give us a frame
isomorphic to the original, or can it behave differently?

In Section 7 we set up the canonical embedding

A - PA

a - ua

for an arbitrary frame. We ask when this embedding is an isomorphism. For the time
being we make the following definition.

Definition 8.1.1. A frame A is patch trivial if the embedding

A - PA

is an isomorphism. �

Later we will find a way of characterising patch triviality, and this leads to some
better terminology, but for the moment it is useful to refer to it in this way.

The corresponding question for the full assembly is not very interesting. We know
that

A - NA

is an isomorphism exactly when the frame A is boolean. By contrast the question for the
patch assembly is going to produce some very interesting frames.

Question 8.1.2. Under what circumstances is a frame A patch trivial?

87



88 CHAPTER 8. A HIERARCHY OF SEPARATION PROPERTIES

Recall that the patch assembly PA of a frame A is generated by the trivial (sometimes
“closed”) nuclei ua (for a ∈ A) and the fitted nuclei vF associated with the open filters F
of A. Thus for a frame A to be patch trivial, for every open filter F there must be some
d ∈ A such that

vF = ud

holds. In particular
Regular =⇒ Patch trivial

is a restatement of Theorem 7.1.4. There is a lot of slack in the proof of that result, and
we will show that regularity is much stronger than required. We do this by an analysis
of how vF is generated.

For now let’s try to get a feel for the point-sensitive nature of patch triviality.
Suppose the space S is sober and packed. Thus by Lemma 4.1.2 it is also T1. The

patch assembly diagram of Section 7.3 gives a pair of morphisms

OS -�
πS

POS

which compose to give the identity morphism on OS. It is tempting to think that the
other composite is also the identity (on POS) and hence the topology OS is patch trivial.

Example 8.1.3. There are spaces S which are sober and packed but where the topology
OS is not patch trivial. A collection of these examples is discussed in Chapter 11. �

This example shows there is some kind of discrepancy between the point-sensitive
patch construction and the point-free version. This will be analysed in more detail in
Chapter 9. The example shows also that sober and packed are not sufficient to ensure
that a topology is patch trivial. By Theorem 7.1.4 we know that T3 is sufficient. However,
T3 is not necessary, as shown by either part of the following result.

Lemma 8.1.4. Suppose the space S is either
(a) T2 or
(b) T0 + fit + packed (hence T1 + sober)

then OS is patch trivial.

Proof. Part (a) will be proved later as part of Theorem 8.4.4.
(b) Consider any vF where F is open. This F is determined by some Q ∈ QS. On

general grounds vF and [Q′] are companions, so vF = [Q′] by fitness. The packed property
ensures that Q′ is open.

Here we have two conditions which imply patch triviality. However, neither of these
is necessary.

Example 8.1.5. (a) The subregular topology on the real numbers discussed in Sec-
tion 10.2 is a T2 space (hence packed and sober) which is not fit. In particular, the
condition

T0 + fit + packed

is not necessary to achieve a patch trivial topology.
(b) The maximal compact topology is a

T0 + fit + packed + compact
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space which is not T2. In particular T2 is not necessary to achieve a patch trivial topology.
�

This was the haphazard collection of results we started out with. They don’t seem to
give much of a clue about the nature of patch triviality. In the next section, we introduce
a hierarchy of properties which will organise and explain most of these results.

8.2 Stratified tidiness

Recall that in Section 5.6 when we introduced the v nucleus associated with an open
filter we let f be the pointwise supremum∨̇

{va | a ∈ F}

and constructed a sequence of elements

d(0) = ⊥ d(α+ 1) = fd(α) d(λ) =
∨
{d(α) | α < λ}

for each ordinal α and limit ordinal λ. We saw that this eventually stabilises at some
element

d = d(∞) = vF (⊥)

for some ordinal ∞.
So using this notation, Question 8.1.2 asks when is it the case that

vF = ud

for each open filter F?
We know that ud ≤ vF on general grounds, so we only need to consider the conditions

under which vF ≤ ud holds. For this, we claim that the condition

x ∈ F =⇒ d ∨ x = >

is both necessary and sufficient. We will prove this in Lemma 8.2.2
This motivates the following definitions.

Definition 8.2.1. Let A be a frame and let α be an ordinal.
An open filter F on A is α-tidy if

x ∈ F =⇒ d(α) ∨ x = >

where d(α) = fα⊥ (as above).
The frame A is α-tidy if each of its open filters is α-tidy.
We say A is tidy if it is α-tidy for some ordinal α.
If A is tidy, then its tidiness is the smallest ordinal α such that A is α-tidy. �

This definition attaches an ordinal measure to each frame which, as we will see, is an
indication of how neat it is.

Lemma 8.2.2. A frame is tidy if and only if it is patch trivial.
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Proof. For an open filter F , if

x ∈ F =⇒ d(α) ∨ x = >

holds, then F ⊆ ∇(ud), giving vF ≤ ud and thus vF = ud. This shows that A is patch
trivial.

Conversely, suppose

A - PA

is an isomorphism. Consider an open filter F . We must have vF = ud for some d ∈ A,
and this can only be

d = vF⊥ = d(∞)

for some ordinal ∞. Then
F = ∇(vF ) = ∇(ud)

and so
x ∈ F =⇒ d ∨ x = >

holds.

Essentially, a frame is tidy when its patches don’t show. This, with the stratified
version, is the better terminology promised in Section 8.1.

Trivially, if a filter or frame is α-tidy then it is β-tidy for all β ≥ α. Thus we have a
hierarchy of properties. Of course, we have not yet shown that all these properties are
distinct, but we will do so in Theorem 11.3.7 when we examine a series of examples.

Observe that

A is 0-tidy ⇐⇒ A is trivial (the one element frame)

however 1-tidyness is much more interesting. Theorem 7.1.4 says

regular =⇒ tidy

and this will be refined to
regular =⇒ 1-tidy

which, with the non-collapsing hierarchy gives a vast improvement.
We will want to use tidyness in the spatial case where the frame under consideration

is a topology.
In this situation, the descending sequence of closed sets described in Section 5.6 comes

in to play.

Lemma 8.2.3. Let S be a sober space, let Q ∈ QS and let F be the corresponding filter
on OS. For each ordinal α, the filter F is α-tidy precisely when Q(α) = Q.

Proof. By definition F = ∇(Q) is α-tidy precisely when for each U ∈ OS

U ∈ F =⇒ Q(α)′ ∪ U = S

since d(α) = Q(α)′. In other words when

Q ⊆ U =⇒ Q(α) ⊆ U

holds. That is, when Q = Q(α) since Q is saturated.
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8.3 Stratified regularity

Tidyness gives us a hierarchy of separation properties for frames. In this section we
show that this is closely related to another hierarchy of properties which are similar to
regularity. This α-regularity comes in two closely related forms.

Definition 8.3.1. Let A be a frame and α some ordinal. We say that A is:
(a) weak α-regular if for each pair of elements a � b and each open filter F containing

a, there exist elements x, y such that

a ∨ x = > y ≤ a y � b x ∧ y ≤ d(α)

hold.
(b) α-regular if for each pair of elements a � b there is an element y such that for

each open filter F with a ∈ F there is an element x such that

a ∨ x = > y ≤ a y � b x ∧ y ≤ d(α)

hold. �

Compare this with Definition 3.5.1. The difference between weak α-regularity and
α-regularity is in the order of the quantifiers. Weak α-regular asks only that

(∀a)(∀F )(∃y)(∃x) . . .

whereas α-regular insists that

(∀a)(∃y)(∀F )(∃x) . . .

hold. In other words, α-regularity requires some uniformity in the choice of y.
At first weak α-regularity seems the obvious one to use, and was in fact the first we

tried. However, the second notion ties in better with some of the other properties we
expect of regularity, in particular the α-indexed version of the well-inside relation defined
below.

In Lemma 3.5.4 we saw that frame is regular if and only if every element is the join
of elements well-inside it. There is a corresponding notion of α-well-inside to go with
α-regularity.

Definition 8.3.2. We say that y is α-well-inside a (and write y 0α a) if for every open
filter F such that a ∈ F there exists x such that

a ∨ x = > y ≤ a x ∧ y ≤ d(α)

hold. �

Notice that 00 is just the usual definition of 0 we saw in Definition 3.5.3. From the
definitions of α-regular and α-well-inside we see that A is α-regular exactly when for each
pair a � b there is some y such that

y 0α a y � b

hold.
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Lemma 8.3.3. A frame A is α-regular if and only if every element of A is the join of
elements α-well-inside it.

Proof. Suppose A is α-regular. For a ∈ A let

b =
∨
{y | y 0α a}

so that b ≤ a. If a � b then by the definition of α-regularity

y 0α a y � b

for some y ∈ A which is a contradiction.
Conversely, suppose

a =
∨
{y | y 0α a}

for each a ∈ A. Then
a � b =⇒ (∃y)[y 0α a and y � b]

which verifies α-regularity.

The following properties of α-regularity are immediate from the definition.

Lemma 8.3.4. For each frame A and ordinals α ≤ β the following implications hold.
(a) α-regular =⇒ weak α-regular.
(b) α-regular =⇒ β-regular.
(c) Weakly α-regular =⇒ weakly β-regular.
(d) 0-regular ⇐⇒ regular.

We now have three hierarchies of properties. In fact, these interlace.

Theorem 8.3.5. For each frame A the implications

α-tidy =⇒ α-regular =⇒ weakly α-regular =⇒ (α+ 1)-tidy

hold for each ordinal α.

Proof. Suppose A is α-tidy. Consider elements a � b of A. Let y = a, and suppose that
F is an open filter with a ∈ F . Then α-tidyness gives a ∨ d(α) = >. Setting

x = a ⊃ d(α) y = a

gives us
x ∧ y = x ∧ a ≤ d(α) a ∨ x ≥ a ∨ d(α) = >

and y ≤ a with y � b to verify α-regularity.
It is trivial to see that α-regularity implies weak α-regularity.
Suppose A is weak α-regular. Consider any open filter F and a ∈ F . The weak

α-regularity gives

a =
∨
{y | y ≤ a and a ∨ (y ⊃ d(α)) = >}

and this supremum is directed. Since a ∈ F , this shows that

a ∨ (y ⊃ d(α)) = >

for some y ≤ a with y ∈ F . But now

y ⊃ d(α) = vyd(α) ≤ fd(α) = d(α+ 1)

and therefore A is (α+ 1)-tidy.
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Remembering Lemma 8.3.4(c), a particular case of Theorem 8.3.5 is

regular = 0-regular =⇒ 1-tidy

which is our version of Theorem 7.1.4.

8.4 The spatial case

On a spatial frame, how do these properties relate to the established separation properties,
especially T0, T1, T2 and T3?

Lemma 8.4.1. If the frame A is tidy then each point of A is maximal in A and the point
space is T1.

Proof. Let S be the point space of A. Consider any p ∈ S and let P be the corresponding
completely prime filter, that is

y ∈ P ⇐⇒ y � p

for y ∈ A. Notice that vP is a patch nucleus since P is open. Let

d = vP⊥ ≤ wp⊥ = p

and consider any a > p. Since a � p we have a ∈ P and thus tidyness gives

a = a ∨ p ≥ a ∨ d = >

therefore p is maximal.

We can extend this result to T0 spaces in general. Each T0 space is a subspace of its
sober reflection +S, and the two have isomorphic topologies. If the frame OS is tidy, then
by the previous lemma its point space +S is T1. Lemma 2.1.4 states that if a space S has
a sober reflection which is T1, then S is already T1 and sober. This gives the following
result.

Lemma 8.4.2. If a T0 space has a tidy topology then it is T1 and sober.

A T0 space is T3 precisely when it is 0-regular. What about the next level of the
interlacing hierarchy? To answer that we refine Lemma 8.4.1

Lemma 8.4.3. If a frame A is 1-tidy then its point space S is T2.

Proof. Suppose p ∈ S with corresponding filter P . Then

d(1) =
∨
{¬x | x � p}

and because A is 1-tidy,
a � p =⇒ a ∨ d(1) = >

for a ∈ A. Consider any point q 6= p. We need to find disjoint open neighbourhoods for
p and q. We know by the previous lemma that points are maximal, hence q � p in A,
and hence q ∈ P and so q ∨ d(1) = >, to give d(1) � q. Thus there exists some x � p
with y = ¬x � q and hence we have

p ∈ U(x) q ∈ U(y) U(x) ∩ U(y) = U(⊥) = ∅

which is a T2 separation of p and q as required.
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Theorem 8.4.4. A T0 space S has a 1-tidy topology if and only if S is T2.

Proof. Each T0 space is a subspace of its sober reflection. If such a space has a 1-tidy
topology, then by the previous lemma it is a subspace of a T2 space, and hence is T2 itself.

We now just need to show that if S is T2 then its topology is 1-tidy. Suppose F is an
open filter on the frame OS. Since S is T2 and therefore sober, we have F = ∇(Q) for
some compact saturated subset Q of S. In other words,

U ∈ F ⇐⇒ Q ⊆ U

for U ∈ OS. As usual
Q(1) =

⋃
{U− | Q ⊆ U}

and so Q ⊆ Q(1).
It remains to show that Q(1) ⊆ Q. Suppose p /∈ Q. By Corollary 2.2.12 there exist

open sets U, V such that

p ∈ U Q ⊆ V U ∩ V = ∅

hold. Thus p /∈ V − and so p /∈ Q(1). This proves the result.

There are several attempted characterisations of Hausdorff for frames. Here we have
another one. We don’t at present know how it relates to the others.

To conclude this section let’s gather together the various characterisations we have
obtained so far, and one we will obtain in the next section.

For each T0 space we have the following.

(Page 90) OS is 0-tidy ⇐⇒ S = ∅
(Lemma 8.3.4(d)) OS is 0-regular ⇐⇒ S is T3

(Theorem 8.4.4) OS is 1-tidy ⇐⇒ S is T2

OS is 1-regular ⇐⇒ ??
(Theorem 8.5.12) OS is tidy ⇐⇒ S is packed + stacked

Stacked spaces are the topic of the next section.

8.5 Stacked spaces

Recall the following two observations.

• A frame A is patch trivial exactly when it is tidy (Lemma 8.2.2). This enables us
to associate a rank, the degree of tidyness, to such a frame.

• For a topological space S, we have pS = S exactly when S is packed (Section 4.1).

What is the relationship between these two notions? In this section we show that the
topology of a T0 space is tidy exactly when the space is packed in a rather neat fashion.
This enables us to make a perhaps unexpected connection with another topic that will
be discussed in Section 8.6.

Lemma 8.5.1. Let A be a frame with point space S. If A is tidy then S is packed.
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Proof. Consider Q ∈ QS and let F = ∇(Q) be the associated filter on A. Recall from
Section 6.4 that ΣA = σOS ◦ NUA. We know Σ(vF ) = Q′. When A is tidy we have
vF = ud for some d ∈ A, and hence

Q′ = Σ(vF ) = Σ(ud) = U(d)

to show Q is closed.

As a particular case of this, if a sober space has a tidy topology then it is packed.
This looks as though it might be an equivalence but it is not. The following result was
mentioned earlier in Section 8.1, now we give it a name.

Lemma 8.5.2. If the space S is sober and packed then the canonical patch assembly
embedding is split

OS -� POS

that is it has a one-sided inverse where the composite on OS is the identity.

The proof follows directly from looking at the full patch assembly diagram from
Section 7 in the case where the insertion

OS - OpS

is an isomorphism.
Lemma 8.5.1 shows that if the topology of a sober space S is tidy then S is packed.

However the examples in Chapter 11 shows that sober and packed are not enough to
achieve tidyness. We need something extra. To analyse this we use a relation on the
subsets of a space.

Definition 8.5.3. Let S be a space and let Q ∈ QS. We say a closed set X ∈ CS is
Q-irreducible and write

QnX

if
Q ⊆ U =⇒ X ⊆ (X ∩ U)−

holds for each U ∈ OS. �

Since the inclusion (X ∩U)− ⊆ X is trivial, the relationship QnX can be rephrased
as

Q ⊆ U =⇒ X = (X ∩ U)−

(for U ∈ OS). This strengthening will be useful in some calculations.
What has this notion, Q-irreducibility, got to do with the more standard notion of

irreducibility? For each point x of a space the saturation ↑x is compact. We look at
(↑x)-irreducibility.

Lemma 8.5.4. Let S be a space and let X be a non-empty closed set. Then X is
irreducible exactly when

x ∈ X =⇒ (↑x) nX

for each x ∈ S.
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Proof. Suppose first that X is irreducible, consider any x ∈ X, and any
U ∈ OS with x ∈ U . Let

V = (X ∩ U)−
′

so we require X ⊆ V ′, that is X ∩ V = ∅. By way of contradiction suppose X meets V .
We know X meets U (at x), so the irreducibility gives

∅ 6= X ∩ U ∩ V ⊆ V ′ ∩ V = ∅

which is nonsense.
Secondly suppose

x ∈ X =⇒ (↑x) nX

for each x ∈ S. Suppose U, V ∈ OS and

x ∈ X ∩ U y ∈ X ∩ V

say. We must show that X ∩ U ∩ V is non-empty. We have

(X ∩ U)− = X = (X ∩ V )−

by the assumed property of X. In particular

y ∈ (X ∩ U)−

(since y ∈ X). But y ∈ V ∈ OS, and hence

X ∩ U ∩ V 6= ∅

as required.

We use the relation n to impose two conditions on a space.

Definition 8.5.5. A space S is stacked if

QnX =⇒ X ⊆ Q−

holds for each Q ∈ QS and X ∈ CS.
A space S is strongly stacked if

QnX =⇒ X ⊆ (X ∩Q)−

holds for each Q ∈ QS and X ∈ CS. �

We will analyse the connections between these various notions and show how they
relate to tidyness. First we look at the straightforward connections.

Lemma 8.5.6. (a) Each T2 space is strongly stacked.
(b) Each strongly stacked space is stacked.
(c) Each stacked T1 space is sober.
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Proof. (a) Suppose S is a T2 space, and suppose QnX where Q ∈ QS and X ∈ CS. It
is sufficient to show X ⊆ Q.

By way of contradiction suppose X * Q. Thus there is a point p ∈ X −Q. Since S
is T2, Corollary 2.2.12 gives

Q ⊆ U p ∈ V U ∩ V = ∅

for some open sets U and V . Since QnX this gives

X ⊆ (X ∩ U)− ⊆ U− ⊆ V ′

and hence
p ∈ V ∩X ⊆ V ∩ V ′ = ∅

which is nonsense.
(b) This is trivial.
(c) Suppose the space S is T1 and stacked. Consider any closed irreducible set X ⊆ S

and consider any x ∈ X. We show X = {x}.
By Lemma 8.5.4 we have (↑x) nX. Since S is T1 we have

(↑x) = {x} = x−

and since S is stacked we have

x ∈ X ⊆ (↑x)− = {x}

as required.

There is a lot of slack in part (a) of this result. Most spaces we want to look at appear
to be strongly stacked; not many are T2. The following result illustrates that there are
many more strongly stacked spaces out there.

Lemma 8.5.7. Every Alexandroff topology is strongly stacked.

Proof. For Q ∈ QS and X ∈ CS such that QnX we have

Q ⊆ U =⇒ X ⊆ (X ∩ U)−

by definition. But in an Alexandroff space every saturated set is open, so a special case
of the above condition gives

QnX =⇒ X ⊆ (X ∩Q)−

which is precisely the definition for a space to be strongly stacked.

At first sight the point-sensitive relation n looks a bit mysterious. Its role in life is
partly explained by Lemma 8.5.4. Its true purpose becomes clear when we look at the
point-free situation.

Each Q ∈ QS gives an open filter F on OS which, in turns, induces an inflator f = fF

and a nucleus vF = f∞ on OS. We also have the spatially induced nucleus [Q′] on OS,
and we know vF ≤ [Q′] (since F is the admissible filter of both).
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We have
f(W ) =

⋃
{(U ⊃ W )◦ | Q ⊆ U}

for each W ∈ OS. Thus, for each X ∈ CS we have

f(X ′) =
⋃
{(U ′ ∪X ′)◦ | Q ⊆ U}

=
⋃
{(X ∩ U)−

′ | Q ⊆ U}

=
(⋂

{(X ∩ U)− | Q ⊆ U}
)′

=
(
Q̂(X)

)′
where Q̂ is as we defined in Section 5.6. This gives the following.

Lemma 8.5.8. For each space S and Q ∈ QS we have

QnX ⇐⇒ Q̂(X) = X ⇐⇒ vF (X ′) = X ′

for each X ∈ CS.

Lemma 8.5.9. For each space S and Q ∈ QS we have
(a) Q− ⊆ Q(∞)
(b) QnQ(∞)
(c) QnX =⇒ X ⊆ Q(∞)

for each X ∈ CS.

Proof. (a) We have Q ⊆ Q(∞) by construction, and Q(∞) is closed therefore the result
follows.

(b) By definition

Q(∞) = Q̂(Q(∞)) =
⋂
{(Q(∞) ∩ U)− | Q ⊆ U}

so
Q ⊆ U =⇒ Q(∞) ⊆ (Q(∞) ∩ U)−

as required.
(c) By construction Q(∞) is the largest set Y with Q̂(Y ) = Y .

We have seen that
Q ⊆ Q− ⊆ Q(∞)

for each Q ∈ QS. By definition, the left hand inclusion is an equality precisely when the
space S is packed. We have a similar explanation of being stacked.

Corollary 8.5.10. A space S is stacked precisely when Q− = Q(∞) for each Q ∈ QS.

Proof. Since QnQ(∞) by Lemma 8.5.9, stacked implies that

Q(∞) ⊆ Q−

to give the inclusion we need.
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Strongly stacked spaces go one step further.

Lemma 8.5.11. For each space S the following are equivalent.
(a) S is strongly stacked.
(b) For each open filter F on OS we have vF = [Q′] where F is the neighbourhood

filter of Q ∈ QS.
(c) For each open filter F on OS the nucleus vF is spatially induced.

Proof. (a)=⇒ (b). Suppose S is strongly stacked. Consider Q ∈ QS and let F be the
corresponding open filter on OS. We saw in Section 5.7 that vF ≤ [Q′], so it suffices to
show [Q′] ≤ vF . For each X ∈ CS we have

vF (X ′) = X ′ =⇒ QnX

=⇒ X ⊆ (X ∩Q)−

=⇒ [Q′](X ′) = X ′

by Lemma 8.5.8, the strongly stacked property of S and the definition of [Q′]. This shows
that any open set fixed by vF is also fixed by [Q′], and hence [Q′] ≤ vF as required.

(b)=⇒ (c) is trivial.
(c)=⇒ (a). Suppose vF = [E ′] for some E ⊆ S. Then

Q ⊆ U ⇐⇒ E ⊆ U

for U ∈ OS. Thus E ⊆ Q (since Q is saturated). This gives

[Q′] ≤ [E ′] = vF

as required.

With this we can bring several results together to obtain the characterisation of point-
sensitive tidyness.

Theorem 8.5.12. A T0 space S has a tidy topology precisely when it is both packed and
stacked.

Proof. Suppose first that OS is tidy and consider Q ∈ QS. We have

Q ⊆ Q− ⊆ Q(∞)

so it suffices to show Q(∞) ⊆ Q. Let F be the filter on OS induced by Q. Since OS is
tidy we have vF = [D] for some D ∈ OS. In fact D = Q(∞)′. But now

Q ⊆ U ⇐⇒ vF (U) = S ⇐⇒ D ∪ U = S ⇐⇒ Q(∞) ⊆ U

for each U ∈ OS. Since Q is saturated, this gives the required result.
Conversely, suppose S is packed and stacked, and consider any open filter F on OS.

By Lemma 4.1.2 the space S is T1 and hence S is sober by Lemma 8.5.6 (c). We know
that F is induced by some Q ∈ QS. In general we have

[Q(∞)′] ≤ vF ≤ [Q′]

but in a packed and stacked space Q(∞) = Q ∈ CS. this says that vF = [D] for some
D ∈ OS and so OS is tidy.
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8.6 Vietoris points

In this section we see how the material of this chapter has an impact on another topic, the
vietoris points of a frame. A detailed account of this is given in [15]. Here I will describe
the main connections without proofs. These results are not mine and are included here
merely to round out the picture.

The original construction (due to Vietoris and others) starts with a fairly nice space S
and produces a second space where the points are certain subsets of the first. On reflection
it seems that QS is the most obvious set on which to impose the second topology. (In the
original construction S is compact T2 and then QS = CS.) Because of later developments
it turns out that the family of compact lenses is a better carrier of the constructed space.
A compact lens is a subset

L = Q ∩X

for Q ∈ QS and X ∈ CS.
A point-free version of this construction is given in [10], with a special case described

in [9]. This version starts with an arbitrary frame A to produce a second frame V A, the
V -modification of A. Even when A is spatial, the frame V A need not be, but it does
have a point space pt(V A). The topology on pt(V A) is canonical.

When A is spatial, A = OS, this gives us (at least) two modification spaces, the space
pt(V A) and the space (or spaces) obtained by the point-sensitive construction. What is
the relationship between these spaces? When S is ‘nice’ they are the same, but in general
they are different. Here being ‘nice’ is related to the stacking properties of S.

What are the V -points of a frame A, that is the points of V A? We have had a glimpse
of these in Section 5.7. The following result is Theorem 5.7 of [15].

Theorem 8.6.1. For each frame A the V -points are the pairs (F, a) where F is an open
filter on A and a is a member of the principal lower section

[vF (⊥), wF (⊥)]

of AF .

We now see that Section 5.7 is actually about V -points. As indicated there the space
pt(V A) can be quite complicated.

When A is spatial, that is when A = OS for a sober space S, we can describe these
V -points (F, a) directly in terms of S.

The first component F is an open filter on OS and so corresponds to some Q ∈ QS.
Recall also that Q is the saturation of its set M of minimal members, and sits inside
Q(∞). The second component is an open set, but in this setting it is more convenient to
deal with the complement.

The following version of Theorem 8.6.1 is given in Section 6 of [15].

Theorem 8.6.2. For each sober space S the V -points of OS are the pairs (Q,X) where
Q ∈ QS and X ∈ CS with both QnX and M− ⊆ X ⊆ Q(∞).

For a fixed Q ∈ QS, which closed sets X ∈ CS give a V -point (Q,X)? We have

M− ⊆ Q− ⊆ Q(∞)
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and each of these three sets gives a V -point. In fact, M− and Q(∞) are the two extremes
and, depending on the space, Q− can float about within this interval. Of course, these
closed sets need not be distinct. In fact, when the topologyOS is tidy we haveM = Q(∞)
and the set of V -points ofOS is essentiallyQS. It turns out that in this case the canonical
topology on pt(VOS) is exactly that given by the original point-sensitive construction.

What is pt(VOS) when OS is not tidy?
Recall that a compact lens has the form

L = Q ∩X

where Q ∈ QS and X ∈ CS. For such a lens L we have M ⊆ L ⊆ Q, and hence Q is the
saturation of L. Also L− ⊆ X, but these sets can be different. Nevertheless we do have

L = Q ∩ L−

that is we can also replace X by L−.
For each compact lens L as above the pair (Q,L−) is a V -point. These are the focal

points of OS. It is simple to show that a V -point (Q,X) is a focal point precisely when
X = (Q∩X)−. In particular, for a fixed Q ∈ QS the two sets M− and Q− provide focal
points, and these are the extreme focal points.

With a bit more work the following can be obtained.

Theorem 8.6.3. Let S be a sober space. If S is strongly stacked then each V -point of
OS is a focal point.

If each V -point of OS is a focal point then S is stacked.

At the time of writing the precise relationship between these three properties is not
known. What is known is that the set of focal points can be viewed as a subspace of
pt(VOS) with the topology given by the original point-sensitive construction.

These results indicate that when S is ‘nice’ the point-free construction reproduces one
of the point-sensitive constructions. This can be made precise as follows.

Theorem 8.6.4. Let S be a sober space.
(a) The space S is T1 precisely when M− = Q− for each Q ∈ QS, that is when each

Q ∈ QS has precisly one associated focal point.
(b) The space S is T1 and stacked precisely when M− = Q(∞) for each Q ∈ QS, that

is when each Q ∈ QS has precisely one associated V -point.

These results indicate that the stacking properties of a sober space have something to
do with the relationship between the point-free and the point-sensitive V -constructions.
Given this we can look at Example 5.7.3 in a different way.

Example 8.6.5. There is a space S which is T1, sober and tightly packed. The space
S has a special point ∗ and for Q = {∗} there is just one associated focal point (since
M = Q = {∗}) but there is a veritable forest of associated V -points. �

As indicated in Section 5.7 the deleted set S = S − {∗} is a ‘large’ tree with many
‘large’ subtrees. Each such subtree gives an associated V -point. The details of this are
given in Chapter 11 where a collection of similar examples is discussed.
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Chapter 9

The point space of the patch
assembly

For a frame A with point space S there are two patch related frames

Opt(PA) POS = P (OptA)

the topology of the point space of the patch assembly and the patch assembly of the
point space topology. In this chapter we investigate the connection between these and
certain related spaces.

9.1 The basic information

In Section 7.3 we constructed the following commuting diagram giving the relationship
between the patch and full assemblies on a frame A and the patch and front topologies
on its point space S.

A - PA ⊂ - NA

OS

UA
?

- POS

PUA
?

⊂ - NOS

NUA
?

OpS

πS
?

⊂ -

⊂

-

OfS

σS
?

Let’s set down what we know about this diagram.
• Each horizontal arrow is an embedding and, as indicated, three of them are inclu-

sions.
• By construction the spatial reflection arrow UA is surjective.
• The functorial properties of N ensure that both NUA and PUA are surjective.
• The arrow σS is surjective. Furthermore, the space fS is the point space of both

NOS and NA, where σS and the composite ΣS = σS ◦ NUA are the spatial reflection
arrows.

• The arrow πS is surjective. Indeed, for each Q ∈ QS we have

π(vF ) = Q′
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where F is the open filter on OS generated by Q.
This information has an obvious omission which prompts some questions.
• What is the point space pt(PA) of the patch assembly PA of A?
• In particular, what is the point space of POS?
• Are these spaces different?
In this chapter we investigate these and related questions. At the time of writing we

do not have all the answers, but we do have some useful information.

9.2 Two spoilers

In a way the front space fS of S is a rather crude version of the patch space pS. Never-
theless fS is the point space of both NOS and NA. Perhaps, in a similar way, pS is the
point space of POS or PA or both. Let’s nail that one straight away.

Example 9.2.1. The patch space pS of a sober space S need not be sober. For instance,
this is the case when S is the sober reflection of the cocountable topology; see Section 10.1.
For such a space S the patch space pS can not be the point space of anything. �

Of course, there are cases where pS is the point space of POS. For instance, if S is
T2 then pS = S and

OS - POS

is an isomorphism. However, in general we have to search a bit harder to find the point
space.

Perhaps things aren’t too bad and we can show that POS is always spatial. That is
easily nailed as well.

Example 9.2.2. There is a sober space S such that POS is not spatial. See Chapter 11
for a collection of such examples. This result is proved as Theorem 11.3.5. �

These two examples suggest that we still have a bit of work to do, so let’s conclude
this section on a positive note.

Lemma 9.2.3. For a sober space S, if the canonical surjection

POS
π

- OpS

is an isomorphism, then S is strongly stacked.

Proof. Consider Q ∈ QS. By Lemma 8.5.11 it is sufficient to show that

vF = [Q′]

where F is the open filter on OS generated from Q. But, by Lemma 7.3.1, we have

π(vF ) = Q′ = π([Q′])

and, by assumption, π is injective, to give the required result.

The converse is untrue, however, as it is possible to have a strongly stacked space
where π is not an isomorphism. Section 10.4 gives an example of this.
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9.3 The ‘ordinary’ points of the patch assembly

The existence of the surjective morphism

PA - POS - OpS

indicates there is some connection between pS and the point space pt(PA). In particular
there must be a continuous map

pS - pt(OpS) - pt(PA)

where the central space is just the sober reflection of pS. In this section we obtain an
explicit description of this map, and we show that it exhibits pS as a subspace of pt(PA).

Recall that we view the points of a frame as its ∧-irreducible elements. In particular
the points of PA are those patch nuclei that are ∧-irreducible as elements of PA. Recall
also that the points of the full assembly NA are precisely the nuclei wp for p ∈ S. If
any such nuclei belongs to PA then it is automatically a point of PA. We show they all
belong to PA.

Let p be some arbitrary point of S. Recall that

wp(x) =

{
> if x � p
p if x ≤ p

for x ∈ A. Let
P = ∇(wp) = {x ∈ A | x � p}

be the associated completely prime filter, the admitting filter of wp. This is an open
filter. By Lemma 5.5.8 we know that wp is the greatest member of the corresponding
block. What is the least member vP ? To describe that we use the inflator

fp = fP =
∨̇
{vy | y ∈ P}

so that

fp(x) =

{
> if x � p
≤ p if x ≤ p

for x ∈ A. (Later we will see that fp(⊥) = ⊥ 6= p can happen.)

Lemma 9.3.1. For the situation above we have

wp = up ∨ vP = fp ◦ up

and wp ∈ pt(PA).

Proof. We have
wp ≥ up ∨ vP = vP ◦ up ≥ fp ◦ up

and the description of fp gives

(fp ◦ up)(x) = fp(p ∨ x) =

{
> if x � p
p if x ≤ p

= wp(x)

(for x ∈ A) as required.
Both up and vP belong to PA, hence so does wp. But wp is ∧-irreducible in NA,

hence also in PA, so that wp ∈ pt(PA).
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This result gives us a set insertion

S
α

- pt(PA)

p - wp

and so imposes a topology on the set S using the given topology on pt(PA). To describe
the imposed topology we use the canonical subbasic open sets

UPA(ua) UPA(vF )

of pt(PA). Here a is an arbitrary element of A and F is an arbitrary open filter on A.
Recall that Q = S − F is in QS and determines F by

x ∈ F ⇐⇒ Q ⊆ UA(x)

(for x ∈ A).

Lemma 9.3.2. For the situation above we have

wp ∈ UPA(ua) ⇐⇒ p ∈ UA(a) wp ∈ UPA(vF ) ⇐⇒ p ∈ Q′

for each a ∈ A, open filter F and p ∈ S.

Proof. We have

wp ∈ UPA(ua) ⇐⇒ ua � wp ⇐⇒ a � p⇐⇒ p ∈ UA(a)

to give the left hand equivalence.
Remembering that vF is a fitted nucleus we have

wp ∈ UPA(vF ) ⇐⇒ vF � wp ⇐⇒ F * ∇(wp) ⇐⇒ p ∈ F ⇐⇒ p ∈ Q′

to give the right hand equivalence.

This result shows that α is a continuous map when S carries the patch topology.

Theorem 9.3.3. For each frame A with point space S the insertion

pS - pt(PA)

exhibits pS as a subspace of pt(PA).

This result locates what we hope is a large part of pt(PA).

Definition 9.3.4. A point of PA which is not of the form wp for some p ∈ pt(A) is a
wild point. �

Since pt(PA) is sober but pS need not be, we know that wild points exist for some
frames A. In the next section we try to capture some of these beasts.

Question 9.3.5. Is pt(PA) just the sober reflection of pS?

Certainly the sober reflection of pS must sit inside pt(PA). By Corollary 2.3.6 is it
just the front closure of pS in pt(PA). The problem is whether it is the whole of pt(PA).
I have been unable to answer this question. At the moment I tend to the opinion that
the answer is yes.
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9.4 The wild points of the patch assembly

We start by giving an example of a wild point.

Example 9.4.1. The patch assembly of the sober reflection of the cocountable topology
contains a wild point. See Section 10.1 for details. �

Each wild point is attached to one of the wp points in a canonical way.

Lemma 9.4.2. Let A be a frame with point space S and patch assembly PA. For every
point m ∈ pt(PA), the element p = m⊥ is a point of A and is the unique a ∈ A with
ua ≤ m ≤ wa.

Proof. The nucleus m ∈ PA is ∧-irreducible (in PA). In particular, it is not the top of
PA and so p 6= >. Consider x, y ∈ A with x ∧ y ≤ p. Both ux, uy are in PA and

ux ∧ uy = ux∧y ≤ m

so that one of
ux ≤ m uy ≤ m

holds, giving one of

x = ux(⊥) ≤ m(⊥) = p y = uy(⊥) ≤ m(⊥) = p

which shows that p ∈ S.
By construction we have up ≤ m ≤ wp. Consider any a ∈ A with

ua ≤ m ≤ wa. By evaluation at ⊥ we have

a = ua(⊥) ≤ m(⊥) = p ≤ wa(⊥) = a

to give a = p.

This shows that whatever the points of PA are, each one has a parent p which is a
point of A and the image of a point of PA.

What is it about a point of a frame that enables it to be associated with wild patch
points? Recall that each maximal element of a frame is automatically a point, but there
can be non-maximal points.

Lemma 9.4.3. If the point p of the frame A is maximal, then up = wp and p has no
associated wild points.

Proof. The maximality of p gives

up =

{
> if x � p
p if x ≤ p

(for x ∈ A), so that up = wp and there can be nothing between these.

We know several conditions on a frame that ensure that all points are maximal. For
instance, this is the case when the frame is fit or when it is ∞-tidy. For such a frame the
previous lemma tells us that the patch situation is simple.
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Theorem 9.4.4. If each point of the frame A is maximal then A has no wild points and
the two spaces p(ptA) and pt(PA) are essentially the same.

Of course, Lemma 9.4.3 does not say that a non-maximal point must have an associ-
ated wild point. In fact, as we will see, it is not at all clear what allows or prevents the
existence of wild points.

We know that for a T1 space every point is maximal. Thus we have the following
result.

Corollary 9.4.5. If A is a frame with a T1 point space then A has no wild points and
p(ptA) ∼= pt(PA)

What can we say about the points in pt(PA)? Let’s set up a bit of notation to be
used with an arbitrary m ∈ pt(PA) and derive a few properties. Of course, if m is not
wild then almost everything we do is already known.

For m ∈ pt(PA) let p = m(⊥) be the associated point, and let M = ∇(m) be its
admissible filter. In general this need not be open. Whatever it is, M has an associated
minimum nucleus vM , the minimum companion of m. As yet we do not know that
vM ∈ PA. Let M be the set of all open filters F with F ⊆M . Thus M could be empty.
Let

K =
∨
M

where this supremum is taken in the poset of all filters on A. Since

vK =
∨
{vF | F ∈M}

we see that
vK ≤ vM ≤ m ≤ wp

and vK ∈ PA.

Lemma 9.4.6. Using the notation above, for each frame A and m ∈ pt(PA) we have

m = up ∨ vM = up ∨ vK

and
G ∩H ⊆M =⇒ G ⊆M or H ⊆M

for all open filters G,H.

Proof. For convenience let k = up ∨ vK so that

k ≤ up ∨ vM ≤ m

and a comparison m ≤ k suffices for the first part. Since m ∈ PA it is a supremum of
nuclei ua ∧ vF for certain a ∈ A and open filters F . For such a nucleus we have

ua ∧ vF ≤ m

and hence, since m is ∧-irreducible in PA one of

ua ≤ m vF ≤ m
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holds. These give
a ≤ p F ⊆M

and hence one of

ua ∧ vF ≤ ua ≤ up ≤ k ua ∧ vF ≤ vF ≤ vK ≤ k

holds, and so
ua ∧ vF ≤ k

in all cases. In particular, m ≤ k since m is the supremum of the nuclei ua∧vF considered.
For the second part consider the open filters G,H with G ∩H ⊆M . Then

vG ∧ vH = vG∧H ≤ vM ≤ m

and hence one of
vG ≤ m vH ≤ m

holds, to give either G ⊆M or H ⊆M as required.

There is much that is not known about this situation. I will conclude this chapter
with what I believe is the most important open question.

Let A be an arbitrary frame with point space S. Consider the topological embedding

pS - pt(PA)

described above. We know that pS need not be sober, but pt(PA) is sober. The sober
reflection of pS lives inside pt(PA) and is just the front closure of pS. This leads to the
crucial open question.

(?) For a frame A, under what circumstances is the sober reflection of pS just the
space pt(PA)?

It is possible that this is always the case, but (after many sleepless nights) I have not
yet been able to find a proof or a counterexample.
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Chapter 10

Examples

In this and the next chapter we gather together many of the examples which have led
to a greater understanding of the patch constructions. Most of these we devised as
counterexamples to some conjecture or other. Eventually several were overtaken by
‘better’ counterexamples. However, these earlier examples are included here for they
may have attributes which are useful for other purposes.

10.1 The cofinite and cocountable topologies

It seems that the crucial properties of these two examples are as follows.
• The intersection of two non-empty open sets is non-empty.
• Each superset of a non-empty open set is open.
It is possible to do the analysis that follows in more generality using just these prop-

erties, but the extra detail is not needed here. However, it is convenient to use a notation
which hints at this more general analysis.

Definition 10.1.1. (a) Let S be an infinite set. The cofinite topology on S consists of
the empty set together with all subsets U ⊆ S such that U ′ is finite.

(b) Let S be an uncountable set. The cocountable topology on S consists of the empty
set together with all subsets U ⊆ S such that U ′ is countable. �

Thus in both cases we have a set S furnished with a topology of the form

OS = {∅} ∪ FS

where FS is a certain filter of subsets of S. In fact we use

(a) FS = PcofS (b) FS = PccS

the filters of cofinite and cocountable subsets, respectively. Notice that in both cases the
size of S ensures that ∅ /∈ FS, so that OS 6= PS and the space is not discrete.

For the most part we can carry out a uniform analysis, one that applies equally well
to both cases, using a common notation. Of course, every now and then we need to look
at the cases separately (for they do differ in some crucial ways). In this and the next
subsection we look at the point-sensitive properties. The results we achieve are gathered
together in Table 10.1. The notation used will be explained as we proceed.
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General (a) Cofinite (b) Cocountable

FS = PcofS FS = PccS
OS = {∅} ∪ FS OS = {∅} ∪ PcofS OS = {∅} ∪ PccS
O+S = {∅} ∪ +FS
Of+S = PS ∪ +FS

= PS ∪ OfS
QS = PS QS = PfinS
GS = PS GS = PccS

OpS = {∅} ∪ GS OpS = PS OpS = OS
Op+S = {∅} ∪ +FS ∪ GS Op+S = Of+S Op+S = {∅} ∪ +FS ∪ FS

= O+S ∪ GS

Table 10.1: Various families associated with the spaces

After that we look at the point-free properties.
Both these spaces are T1 since each singleton is closed. However, neither is sober since

FS = OS − {∅} is a filter, and hence the whole space S is closed and irreducible but
not a point closure. Luckily the inebriation is not too bad.

Lemma 10.1.2. Consider the spaces S of Definition 10.1.1. In each case, each proper,
closed irreducible subset is a singleton.

Proof. Let X be a closed irreducible subset with X 6= S. In particular X 6= ∅ (by
definition of irreducibility). By way of contradiction suppose X has at least two members,
say x, y. Since X is closed, both the sets

Ux = X ′ ∪ {x} Uy = X ′ ∪ {y}

are open (since each is a superset of an open set). Each meets X (at x and y respectively),
and hence (by the irreducibility) the set

Ux ∩ Uy = X ′

meets X which is a contradiction.

Neither space is sober, but each is missing just one point. This is easy to fix.

Definition 10.1.3. Let S be either of the spaces of Definition 10.1.1. Let

+S = S ∪ {ω}

where ω is a new point, the tag. In the same way let

+E = E ∪ {ω}

for each E ⊆ S. Let
+FS = {+U | U ∈ FS}
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to produce a filter on +S, and let

O+S = {∅} ∪ +FS

to produce a topology on +S. �

Almost trivially O+S is a topology on +S, and S is a subspace of +S. In fact, we can
say more.

Lemma 10.1.4. For each space S of Definition 10.1.1, the insertion

S - +S

provides the sober reflection of S.

Proof. We need not go through all the details, but we should at least check that +S is
sober. Since each non-empty open set of +S must contain ω, we see that the closure ω−

is the whole space.
A slight modification of the proof of Lemma 10.1.2 shows that each proper, closed

irreducible subset of +S is a singleton.

The topologies of a space and its sober reflection are canonically isomorphic. In these
cases we see that

OS - O+S

W - +W for W ∈ FS
∅ - ∅

is that isomorphism.
We also need the front topology of +S.

Lemma 10.1.5. For each space S of Definition 10.1.1 we have

Of+S = PS ∪ +FS

that is, each front open subset of +S is either a subset of S or a tagged, open, non-empty
subset of S.

Proof. The front topology has a base

U ∩X

for all open U and closed X. Since each s ∈ S is a closed point of +S we see that

PS ∪ +FS ⊆ Of+S

and it suffices to show the converse inclusion.
Consider any basic open set U ∩X of f+S. If U = ∅ then U ∩X = ∅ ⊆ S. Otherwise

we have U = +F for some F ∈ FS. If X ′ ∈ FS then U ∩X ⊆ S (since the intersection
is untagged). Otherwise X = +S and then U ∩X = +F ∈ FS.

This sets down the basic properties of these two spaces. Next we want to describe
the patch properties.
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The point-sensitive patch properties

The major difference between the cofinite and the cocountable topologies, and the reason
why we find the cocountable topology more useful for our purposes, lies in the compact
saturated sets. Both the spaces S are T1, so each subset is saturated. However, the
compact sets are very different.

Lemma 10.1.6. (a) Let S be an infinite set with the cofinite topology. Then QS = PS.
(b) Let S be an infinite set with the cocountable topology. Then QS = PfinS, the

collection of finite subsets.

Proof. (a) Let Q be any non-empty subset and let U be any open cover of Q. Since
Q 6= ∅ there is at least one non-empty U ∈ U . But now Q − U is finite, and so can be
covered by just finitely many members of U .

(b) Consider any Q ∈ QS and, by way of contradiction, suppose Q is infinite. Let X
be any countably infinite subset of Q. Note that X ′ is open.

For each y ∈ Q let
Uy = X ′ ∪ {y}

to obtain an open set. Then
U = {Uy | y ∈ Q}

covers Q and hence, by the compactness, we have

Q ⊆ Uy1 ∪ · · · ∪ Uyn = X ′ ∪ {y1, . . . , yn}

for some y1, . . . , yn ∈ Q. This gives

X = Q ∩X ⊆ {y1, . . . , yn}

which is the contradiction, since X is infinite.

This result enables us to describe the patch topologies on both S and +S. For this we
introduce some notation.

Definition 10.1.7. For each of the two spaces S of Definition 10.1.1 let GS be the set
of all subsets

U ∩ (S −H)

for U ∈ FS and H ∈ QS. �

This GS is a filter on S. In fact, we see that

(a) GS = PS (b) GS = PccS = FS

for the two cases. Using this notation we have the following.

Theorem 10.1.8. For each of the two spaces S of Definition 10.1.1, we have

OpS = {∅} ∪ GS Op+S = {∅} ∪ +FS ∪ GS

where GS is as in Definition 10.1.7.
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Proof. The topology on pS is generated by the sets U ∩Q′ for U ∈ OS and Q ∈ QS. But
this generating family is just

{∅} ∪ GS

which is already a topology.
For the description of Op+S we verify several inclusions.
The inclusions

{∅} ∪ +FS ⊆ O+S ⊆ Op+S

are immediate.
Consider any non-empty Q ∈ Q+S. The specialisation order of +S is the discrete set

S with the tag ω sitting on top. Thus

Q = {ω} ∪H

for some H ⊆ S. A simple argument shows that H is compact in S, and hence S −H ∈
GS. Thus

+S −Q = S −H ∈ GS

to show that
{∅} ∪ +FS ⊆ Op+S ⊆ {∅} ∪ +FS ∪ GS

holds. Since the larger family is a topology on +S, it suffices to show that
GS ⊆ Op+S.

Consider any member of GS. This has the form

G = U ∩ (S −H) = U −H

where U ∈ FS and H ∈ QS. But now +H ∈ Q+S, and hence

G = U −H =+U − +H ∈ Op+S

as required.

It is worth restating these results separately for the two cases, for there is a nice
surprise.

Theorem 10.1.9. (a) Let S be an infinite set with the cofinite topology OS. Then

OpS = PS Op+S = PS ∪ +(PcofS) = OfS

hold.
(b) Let S be an uncountable set with the cocountable topology. Then

OpS = OS Op+S = {∅} ∪ +FS ∪ FS

and OpS is just the cocountable topology on the tagged set +S.

Proof. Only the description of Op+S for case (b) is not immediate. But here we have

FS = PccS GS = FS = PccS

so that +FS ∪ FS is the family of cocountable subsets of +S.
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Now for the surprise. Consider case (b), the uncountable set S with the cocountable
topology. The patch space p+S is just the tagged space +S with the cocountable topology.
But S and p+S have the same size and any bijection between them is a homomorphism. In
particular, OS and Op+S are isomorphic, but not canonically. This gives us the following
result.

Theorem 10.1.10. The process

S - p+S

of taking the patch space of the sober reflection can continue forever.

This should be compared with the two processes

S - +S S - pS

of sobering up a space and taking its patch space. The first one stabilises after one step
and, by Corollary 4.2.5, the second stabilises after two steps. However it seems that if
we mix them then things can get nasty. I have no idea what happens at the first limit
level.

The full assembly

In this subsection we continue the analysis of the two spaces of Definition 10.1.1. Thus
S is a space of the appropriate cardinality and

OS = {∅} ∪ FS

is the cofinite or cocountable topology. Our aim is to describe the full assembly NOS.

Definition 10.1.11. For each H ⊆ S set

[H](U) =

{
H ∪ U for U ∈ FS
H◦ for U = ∅

and

〈H〉(U) =

{
H ∪ U for U ∈ FS
∅ for U = ∅

(for U ∈ OS) to produce two functions from OS to itself. �

Notice that on general grounds [H] is just the spatially induced nucleus on OS ob-
tained from H ⊆ S. The special nature of S ensures that 〈H〉 is a nucleus also.

Lemma 10.1.12. For all H ⊆ S each of the operators [H] and 〈H〉 is a nucleus on OS.

Proof. Only the ∧-preserving property of 〈H〉 is not immediate. We need to check that

〈H〉U ∩ 〈H〉V = 〈H〉(U ∩ V )

holds for each U, V ∈ OS.
If either U or V is empty, then both sides are empty. If both U and V are non-empty

then so is U ∩ V and hence

〈H〉U ∩ 〈H〉V = (H ∪ U) ∩ (H ∪ V ) = H ∪ (U ∩ V ) = 〈H〉(U ∩ V )

as required.
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As we let H vary through PS there will be some repetitions amongst the nuclei [H]
and 〈H〉. If H = ∅ or H /∈ FS then H◦ = ∅ and hence [H] = 〈H〉. We make a selection
to avoid these duplications. Recall that from Lemma 10.1.5 we have

Of+S = {∅} ∪ (PS − {∅}) ∪ +FS

where now it is convenient to separate ∅ from the rest. There are no repetitions amongst
these sets, and we use them to index some selected nuclei.

Definition 10.1.13. The selected nuclei on OS are given by

Of+S - NOS
+W - [W ] for W ∈ FS
H - 〈H〉 for H ∈ PS − {∅}
∅ - id

using the decomposition of Of+S. �

We will show that this injection is, in fact, a frame isomorphism, and then use this
to connect the point-free and point-sensitive patch constructions.

First we check the morphism properties.

Lemma 10.1.14. The equalities
• [W ] ∧ [V ] = [W ∩ V ] [W ] ∧ 〈H〉 = 〈W ∩H〉 〈K〉 ∧ 〈H〉 = 〈K ∩H〉
•

∨
{[W ] | W ∈ W} =

∨̇
{[W ] | W ∈ W} = [

⋃
W ]

•
∨
{〈H〉 | H ∈ H} =

∨̇
{〈H〉 | H ∈ H} = 〈

⋃
H〉

hold for all V,W ∈ FS, all K,H ∈ PS − {∅} and all H ⊆ PS − {∅}.

Proof. This is just routine calculations. We will prove only the final part here as an
illustration.

We show that ∨̇
{〈H〉 | H ∈ H} =

〈⋃
H

〉
and then, since this is a nucleus, it must be the supremum we are looking for.

For each U ∈ OS.⋃
{〈H〉U | H ∈ H} =

{ ⋃
(H ∪ U) U ∈ FS

∅ U = ∅

=

{ ⋃
H ∪ U U ∈ FS

∅ U = ∅

= 〈
⋃
H〉

which gives the result.

By checking all the cases we see that this result shows that the assignment of Defini-
tion 10.1.13 is a frame embedding. This deals with the routine part of the following.

Theorem 10.1.15. The assignment of Definition 10.1.13 is an isomorphism.
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Proof. Each nucleus in NOS is a supremum of nuclei of the form

[W ] ∧ [V ′]

for W,V ∈ OS by Lemma 5.2.10. If V = ∅ then V ′ = S, and this infimum is [W ],
therefore we may suppose V 6= ∅. But then either V ′ = ∅ or V ′ /∈ OS, so that
[V ′] = 〈V ′〉 and hence

[W ] ∧ [V ′] = 〈W ∩ V ′〉
by Lemma 10.1.14. Hence each nucleus is of one of the forms∨

{[W ] | W ∈ W}
∨
{〈H〉 | H ∈ H}

for some W ⊆ OS or some H ⊆ PS. Thus it is either [W ] or 〈H〉 where W =
⋃
W and

H =
⋃
H. We may exclude W = ∅ since [∅] = 〈∅〉.

To show uniqueness, we can just check the various cases. Suppose [W ] = [V ]. Then

W = [W ]∅ = [V ]∅ = V

as required. If 〈H〉 = 〈K〉 for some H,K ∈ PS then consider any x ∈ H. The set
U = {x}′ is open, and so

x ∈ H ∪ {x}′ = 〈H〉U = 〈K〉U = K ∪ {x}′

so that x ∈ K. Hence H ⊆ K and by symmetry, K ⊆ H. Finally, we check the case
where [W ] = 〈H〉 for some W ∈ OS and H ∈ PS. Then

W = [W ]∅ = 〈H〉∅ = ∅

and we excluded this case earlier.

Each frame carries three families

u· v· w·

of nuclei (which need not be disjoint).
For the topology OS these are easy to locate (although the notation is a bit tortuous).

Lemma 10.1.16. On the frame OS

u∅ = id = ⊥NOS v∅ = >NOS w∅ = 〈S〉 = ¬¬

and
uW = [W ] vW = 〈W ′〉 wW = [W ]

for each ∅ 6= W ∈ OS.

Proof. This is routine. We just prove two parts; the rest are similar.
We have

w∅(U) = (U ⊃ ∅) ⊃ ∅ = U ′
◦ ⊃ ∅

=

{
∅ ⊃ ∅ U ∈ FS
S ⊃ ∅ U = ∅

=

{
S U ∈ FS
∅ U = ∅

= 〈S〉(U)
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and we know that (U ⊃ ∅) ⊃ ∅ = ¬¬(U) by definition, which gives the result.
For each W ∈ FS,

vW = [W ′] = 〈W ′〉

since W ′◦ = ∅.

The patch assembly

In this subsection we obtain a complete description of the patch assembly POS and
match this with the patch topology Op+S. In particular, we show that POS is spatial
but, as yet, we do not locate all of its points.

Theorem 10.1.15 gives us a complete description of all the nuclei on OS. We use this
to locate the admissible filters. A few simple calculations gives the following.

Lemma 10.1.17. We have

U ∈ ∇([W ]) ⇐⇒ W ′ ⊆ U

U ∈ ∇(〈H〉) ⇐⇒ H ′ ⊆ U and U 6= ∅
U ∈ ∇(id) ⇐⇒ U = S

for each W ∈ FS, H ∈ PS − {∅} and U ∈ OS.

Using this we can describe the blocks in NOS.

Lemma 10.1.18. For each W ∈ FS − {S} the two nuclei 〈W 〉 and [W ] form a block
with 〈W 〉 ≤ [W ]. All other blocks are singletons.

Proof. It is easy to see that

∇([V ]) = ∇([W ]) ⇐⇒ V = W ∇(〈G〉) = ∇(〈H〉) ⇐⇒ G = H

so we just need to check when ∇([W ]) = ∇(〈H〉) which happens precisely when

(W ′ ⊆ U) ⇐⇒ (H ′ ⊆ U and U 6= ∅)

or in other words W = H 6= S. This proves the result.

As a consequence of this we see that the fitted nuclei on OS are

id 〈H〉 [S]

for H ⊆ S. We have

∇(id) = {S} ∇([S]) = PS

and the second of these is open but the first is not. The filter ∇(〈H〉) may or may not
be open depending on H.

To locate the open filters onOS we use the Hofmann-Mislove characterisation. Lemma 10.1.6
gives us QS, but this is not good enough; we need Q+S. A few calculations shows that
Q+S consists of

{ω} +Q ∅
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for Q ∈ QS. Each of these produces an open filter on OS, namely

FS ∇(+Q) PS

respectively where
U ∈ ∇(+Q) ⇐⇒ Q ⊆ U

for U ∈ OS. These are the admitting filters of the nuclei

〈S〉 〈Q′〉 [S]

respectively. In other words, for H ⊆ S the filter ∇(〈H〉) is open if and only if H = S or
H ′ ∈ QS.

These calculations show that POS is
∨

-generated within NOS by the nuclei

id [W ] ∧ 〈S〉 = 〈W 〉 [W ] ∧ 〈Q′〉 = 〈W ∩Q′〉 [W ] ∧ [S] = [W ]

for W ∈ FS and Q ∈ QS. This leads to the following companion of Theorem 10.1.15.

Theorem 10.1.19. For each of the two spaces S of Definition 10.1.1, the assignment

Op+S - POS
+W - [W ] for W ∈ FS
W - 〈W 〉 for W ∈ GS
∅ - id

is a frame isomorphism.

As a consequence of this we see that for the space (a), the cofinite topology, we have

Of+S = Op+S ∼= POS = NOS

that is, the full and patch assemblies are the same. For the space (b), the cocountable
topology, the patch assembly is strictly smaller than the full assembly. In both cases the
isomorphism

Op+S - POS

shows that POS is spatial and locates some of its points. However, since p+S is not sober,
there are some missing points. What are these?

A wild point

In general there are two kinds of points of a patch assembly POS. Firstly there are the
standard points wp where p is a ∧-irreducible of OS. Secondly, there may be some wild
points. For each such point l we have up ≤ l ≤ wp where p = l(⊥). In particular, if
up = wp then there is no wild point associated with p.

What are the standard points of POS? Each ∧-irreducible of OS has the form
W = X ′ where X is a closed irreducible of S. Each such X is either a singleton {s} or
the whole space.
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For W = {s}′ we have

uW = wW = [W ]

and hence this has no associated wild point.

For W = S ′ = ∅ we have

wW = ¬¬ = 〈S〉

with

uW = id

and, as we now show, this has an associated wild point.

Theorem 10.1.20. Let S be an uncountable set with the cocountable topology. Apart
from the standard points of POS (arising from the points of +S) the only wild point is id
which has 〈S〉 as it’s associated standard point.

Proof. The proof is just a series of simple calculations.

First observe that

〈W 〉 6= id 〈W 〉 ≤ 〈S〉 [W ] � 〈S〉

for each W ∈ F .

To show that id is a point of POS remember that every other member of POS is a
[·]-nucleus or a 〈·〉-nucleus. Can two of these meet to give id? Since for U, V ∈ FS we
have

[V ] ∩ [U ] = [V ∩ U ] 〈V 〉 ∩ [U ] = 〈V ∩ U〉 〈V 〉 ∩ 〈U〉 = 〈V ∩ U〉

we see that this cannot happen.

Finally, let l be any wild point of POS. We have id ≤ l ≤ 〈S〉, and l 6= 〈S〉 (since
this is a standard point). Since [W ] � 〈S〉 for each W ∈ FS, we see that either l = id
(which is what we want) or l = 〈W 〉 for some W ∈ FS. By way of contradiction, suppose
l = 〈W 〉. Consider distinct s, t ∈ S. We have

(W ∪ {s}) ∩ (W ∪ {t}) = W

and both the left hand sets are in FS, so that

〈W ∪ {s}〉 ∧ 〈W ∪ {t}〉 = 〈W 〉 = l

and hence

〈W ∪ {s}〉 ≤ 〈W 〉

which cannot be.

At the moment this is essentially the only example we know of a wild point.
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10.2 A subregular topology on the reals

This was the first example we found of a space that was patch trivial but not regular. We
have since found many more examples of this, but we include this all the same because
it is also an example of certain other properties. In particular it is a T2 space whose
topology is not fit.

Let S be the real numbers R furnished with the topology OS consisting of all sets

U ∪ (Q ∩ V )

where U and V are metric open sets. We may insist that U is a subset of V .
Note that in this topology Q is an open set.

Lemma 10.2.1. The space S is T2.

Proof. The topology OS contains a subtopology (the metric topology) which is T2 and
is therefore itself T2.

Lemma 10.2.2. The topology OS is not fit.

Proof. Suppose for a contradiction that OS is fit. Then by the definition of fitness, since
Q * ∅ we can find metric open sets U, V and W such that

1. Q ∪ U = R
2. V ∪ (W ∩Q) 6= ∅
3. U ∩ (V ∪ (W ∩Q)) = ∅
hold. From (3) we deduce that

U ∩ V = U ∩W ∩Q = ∅

and so U ∩W is empty, since every non empty metric open contains a rational point.
But then (1) shows we must have V,W ⊆ Q and so W = V = ∅. This contradicts (2),
and therefore OS is not fit.

10.3 The maximal compact topology

This is example 99 from [17]. It was the first example we found of a space that was tidy
but not 1-tidy, and inspired the cocountable tree examples in Chapter 11.

Let
S = {x, y} ∪ N2

where x, y are distinct points not in N2. Define

Rn = {(m,n) | m ∈ N}

so that Rn is the nth row of N2. Then we let each point p ∈ N2 be open (so that the
restriction of the topology to N2 is discrete). Then we take the open neighbourhoods of
x and y as follows.

• Given x ∈ U ⊆ S, let U be open precisely when U ∩Rn is cofinite for each n ∈ N.
• Given y ∈ V ⊆ S, let V be open precisely when Rn ⊆ V for all except finitely many

n ∈ N.
It is easy to check that this gives a topology.
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Lemma 10.3.1. The maximal compact topology is T1 but not T2.

Proof. The space is T1 since every singleton is closed. Only the pair {x, y} doesn’t have
a T2 separation. For suppose that x ∈ U ∈ OS and y ∈ V ∈ OS. Then there is some
n (in fact, cofinitely many) with Rn ⊆ V . For this n the set U ∩ Rn is cofinite, hence
U ∩ V 6= ∅.

Lemma 10.3.2. The maximal compact topology is sober.

Proof. Consider any closed irreducible set P . We show that P is a singleton. Suppose
that p ∈ P ∩N2. Then, since {q} is open for each q ∈ N2, we have P ∩N2 = {p}. The set

U = {x, y} ∪ {p}′

is open and U ∩ {p} = ∅ so we have P ∩ U = ∅ and hence P = {p}. Now suppose that
P = {x, y}. The two sets

U = {x} ∪ N2 V = {y} ∪ N2

are open with
P ∩ U ∩ V = ∅

and hence one of
P ∩ U = ∅ P ∩ V = ∅

holds. Hence P 6= {x, y} as required.

Lemma 10.3.3. The maximal compact topology is compact.

Proof. If x, y ∈ W ∈ OS then W ′ is finite. Because y ∈ W , the points of W ′ occur in
just finitely many rows Rn. Because x ∈ W , the set Rn −W is finite for each such n.
This shows that S is compact.

Lemma 10.3.4. The maximal compact topology (viewed as a frame of open sets) is fit.

Proof. Consider open sets A * B. We must produce open sets U, V such that

A ∪ U = S U ∩ V ⊆ B V * B

hold. Suppose first that A ∩ N2 * B, and consider any p ∈ N2 with p ∈ A − B. Let
U = {p}′ and V = {p} to get

A ∪ U = S U ∩ V = ∅ V * B

as required. Thus we may suppose A ∩ N2 ⊆ B and hence one of x, y is in A−B. With
the other z ∈ {x, y}, let

U = {z} ∪ N2 V = A− {z}

to produce open sets. Since U is missing just one point, which is in A, we have A∪U = S.
Since V contains a point of A which is not in B, we have V * B. Finally

U ∩ V = A ∩ N2 ⊆ B

as required.
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Lemma 10.3.5. The maximal compact topology is packed. In fact, the compact sets are
exactly the closed sets.

Proof. Suppose there is a compact set E with E− 6= E. Each neighbourhood of each
member of E−−E must meet E, and so E−−E ⊆ {x, y} as the topology on N2 is discrete.
Suppose that y ∈ E− −E. Then E must contain points from infinitely many rows. Pick
one point from each row; this collection of singletons together with the remainder of S
gives an open covering of E with no finite subcover. Similarly, if x ∈ E− − E, then E
must contain an infinite number of points from some one row, so cover E by singletons
from this row and the remainder of S. Once again, this has no finite subcover. Hence if
E− 6= E then E is not compact.

The whole space is compact, therefore every closed subset is compact.

The closed (compact) sets of S are

• finite subsets of N2

• {x} with a subset of finitely many rows of N2

• {y} with at most finitely many points from each row

• {x,y} with any subset of N2.

Lemma 10.3.6. The maximal compact topology is 1-regular.

Proof. Open filters are in bijective correspondence with compact saturated sets. For each
Q ∈ QS we check that

f⊥ =
∨̇
{vU(⊥) | Q ⊆ U} = d(1)

holds as follows

• x, y /∈ Q =⇒ f⊥ = Q′

• x ∈ Q, y /∈ Q =⇒ f⊥ = Q′ − {y}

• y ∈ Q x /∈ Q =⇒ f⊥ = Q′ − {x}

• x, y ∈ Q =⇒ f⊥ = Q′

for the four cases, respectively.
Now, we need to show that for every pair U * V ∈ OS and Q ∈ QS with Q ⊆ U ,

there are X, Y ∈ OS such that

X ∩ Y ⊆ d(1) U ∪X = > Y ⊆ U Y * V

hold.
• If x, y ∈ U then set X = S−U , Y = U . Then X∩Y = ∅ and the other requirements

hold.
• If x ∈ U, y /∈ U then set X = Q′, Y = U , so that

U ∪Q′ = S U ∩Q′ ⊆ Q′ − {y}

as required.
• If y ∈ U, x /∈ U then set X = Q′, Y = U as above.
• If x, y /∈ U then there exists p ∈ U ∩ N2 with p /∈ V . Set Y = {p}, X = S − {p}.

Then X ∩ Y = ∅.
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This shows that the maximal compact topology is 2-tidy, yet we saw in Lemma 10.3.1
that it is not T2 and therefore not 1-tidy.

10.4 A glueing construction

Let A be a frame. The set A × A of ordered elements taken from A is a frame in the
obvious way. We use a pre-nucleus on A to extract a subframe.

Let

d : A - A

be such a pre-nucleus. We take the set of all pairs

(x, y)

from A where both
x ≤ d(y) y ≤ d(x)

hold. It is easy to check this gives a subframe of A× A.
This is a simple example of the glueing construction.
Let S be any topological space. Let

S+ = S0 + S1

be a disjoint sum of two copies of S. We furnish S+ with a topology.
Let d be any pre-nucleus on OS for which

d({x}′) = S

for each x ∈ S. We will see why this extra condition is needed shortly.

Definition 10.4.1. Let X be a subset of a topological space S.
A point x ∈ X is isolated in X if there is some U ∈ OS with X ∩ U = {x}. Let

iso(X) be the set of isolated points of X.
A point x ∈ X is a limit point of X if it is not isolated in X. �

Example 10.4.2. For each X ∈ CS let

lim(X)

be the set of limit points of X, the non-isolated points of X. We check that
• lim(X) ∈ CS
• lim(X) ⊆ X
• X ⊆ Y =⇒ lim(X) ⊆ lim(Y )
• lim(X ∪ Y ) = lim(X) ∪ lim(Y )

and hence
der(U) = lim(U ′)′

gives a pre-nucleus der on OS. Furthermore

der({x}′) = lim(x)′ = ∅′ = S

so that der is an example of the kind of pre-nucleus we need. �
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The analogue of der can be set up on any frame A. For a ∈ A

b = der(a)

is the largest element such that the interval [a, b] is boolean.
The closure ordinal of der is the CB-rank of S. This can be arbitrarily large.
We use the special kind of d to furnish

S+ = S0 + S1

with a topology. We take OS+ to be the set of all disjoint sums

U0 + U1

where
Ui ∈ OSi Ui ⊆ d(U1−i)

for i = 0, 1. This is just the concrete case of the glueing construction and, as there, gives
a topology.

Lemma 10.4.3. If S is T2 then S+ is T1 and sober.

Proof. Consider distinct points in S+. If both lie in the same component then that
component gives a T2 separation. Suppose x0 ∈ S0 and y1 ∈ S1 are such that when
viewed as points x, y ∈ S we have x 6= y, so that

x ∈ U y ∈ V U ∩ V = ∅

for some U, V ∈ OS. The open sets

U0 + U1 V0 + V1

(where U0 = U1 = U and V0 = V1 = V ) give a T2 separation of x0 and y1.
Now suppose x0 ∈ S0 and x1 ∈ S1 arise from the same point x ∈ S. The two sets

S0 + {x1}′ {x0}′ + S1

are open (by the special property of d) and these provide a T1 (but not T2) separation.
Consider any closed irreducible subset of S+. This has the form

Z = Z0 + Z1

where Zi is closed in Si and Zi is either empty or irreducible in Si. Of course, at least
one of Z0, Z1 is non-empty.

If Zi is non-empty, then it is a singleton (since S is T2). Thus the largest Z0 +Z1 can
be is

Z = {x0, y1}
where x0 ∈ Z0 and y1 ∈ Z1. Both the open sets

S0 + {y1}′ {x0}′ + S1

meet Z, but the intersection
{x0}′ + {y1}′

doesn’t. Thus Z must be a singleton.



10.4. A GLUEING CONSTRUCTION 127

Each of the two components of S+ gives a nucleus [Si] on OS+.

[S0](U0 + U1) = (S0 + U1)
◦ = d(U1) + U1

[S1](U0 + U1) = (U0 + S1)
◦ = U0 + d(U0)

We look at the join
[S0] ∨ [S1]

of these nuclei.
Let

f = [S0]∨̇[S1] g = [S0] ◦ [S1] h = [S1] ◦ [S0]

that is

f(U0 + U1) = d(U1) + d(U0)

g(U0 + U1) = d2(U0) + d(U0)

h(U0 + U1) = d(U1) + d2(U1)

for the relevant U0, U1. On general grounds we have

f ≤ g, h ≤ f 2

and f∞ is the required join.
In this case we can also consider

k(U0 + U1) = d(U0) + d(U1)

so that
k ≤ g, h k2 = f 2

hold.
The closure ordinal of each of f, g, h, k is the closure ordinal of d and this can be

arbitrarily large.
Observe that

[S0] ∨ [S1] = > ⇐⇒ S is scattered

holds.
This example was specifically constructed as a strongly stacked space for which

POS
π

- OpS

is not an isomorphism. With the usual notation

vF = [Q′]

for each open filter F since S is strongly stacked, or in other words π is an isomorphism
when restricted to the basic elements of POS. However, things go wrong when we look
at joins of basic nuclei, and we have demonstrated that there are patch nuclei j, k and l
for which

π(j ∨ k) = π(l)
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and yet
j ∨ k 6= l

holds. Equivalently, there are nuclei j, k ∈ POS such that

π(j) ≤ π(k)

yet j � k.
This has a number of implications for the patch assembly and its point space. It is

a T1 sober space, therefore it has no wild points and the point space of POS is just pS.
We have shown that π is not an isomorphism, therefore POS is not spatial.

The moral is that we cannot just look at the action of π on the basic nuclei because
even when this is nice, there is still room for some bad behaviour.



Chapter 11

The boss topology on a tree

We first constructed these examples to answer the question of whether a space is packed
exactly when it has a tidy topology. We know that

OS tidy =⇒ S packed

in general. We want to know whether the converse implication holds.
We will construct a variety of different tree topologies, but they all have a number of

features in common. We will show that each (pointed) tree carries a

T1 + sober + tightly packed

topology.
We also use these trees to give examples of spaces with different tidiness (see Sec-

tion 8.2).

11.1 Trees and boss topologies

Trees are well known but we should start by reviewing a few standard notions.

Definition 11.1.1. A tree is a poset S such that for each node x ∈ S the set

P (x) = {y ∈ S | y ≤ x}

of predecessors of x is linearly ordered. �

Sometimes a tree is required to have a stronger property, namely that each set P (x)
is well-ordered. In those circumstances what we here call a tree is a tree-like poset. As it
happens the general machinery does not require the well-foundedness. However, all but
one of the particular examples will be well founded. For most of our examples P (x) will
be finite, however we will later see that this need not be the case.

For the time being we work with an arbitrary tree S. As usual, we write < for the
strict comparison on S, that is

x < y ⇐⇒ x ≤ y and x 6= y

for x, y ∈ S.

129
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Definition 11.1.2. For x, y ∈ S we say x is an immediate predecessor of y or y is an
immediate successor of x if x < y and

x ≤ z ≤ y =⇒ x = z or z = y

for each z ∈ S. In other words, there is a gap between x and y. Let

I(x) = {y ∈ S | y is an immediate successor of x}

for each x ∈ S. �

Notice that the tree and gap property give

I(x1) ∩ I(x2) 6= ∅ =⇒ x1 = x2

for each x1, x2 ∈ S.
The technique we develop uses the size of subsets of I(x) for arbitrary nodes x ∈ S.

For this it is convenient to have a convention.
For the purposes of these examples, we say that for each x ∈ S (the parent tree) a

subset E ⊆ I(x) is small if it is countable and large if it is uncountable.
There are many other possible interpretations of ‘small’ and ‘large’ that could be

used. The crucial properties a notion of smallness must have are the following.
• Each singleton and ∅ is small.
• H ⊆ K with K small =⇒ H is small.
• H,K small =⇒ H ∪K is small.
Then a set is ‘large’ exactly when it is not small. Not all these notions will give us

the properties these examples have that we are interested in, however. In particular an
interpretation of ‘small’ as ‘finite’ will not work. We will locate the crucial step that fails
for this interpretation.

To analyse the tree S we attach a boss point to form

S = S ∪ {∗}

(where ∗ /∈ S), and then we impose a topology on S.

Definition 11.1.3. Let OS be the family of subsets U ⊆ S such that both

(∀x ∈ S)[x ∈ U =⇒ I(x)− U is small]

∗ ∈ U =⇒ (∀x ∈ S)[I(x)− U is small]

hold. �

It is easy to show that this is a topology.

Lemma 11.1.4. The family OS is a topology on S.

Note that a subset X ⊆ S is closed precisely when both

(∀x ∈ S)[x /∈ X =⇒ I(x) ∩X is small]

∗ /∈ X =⇒ (∀x ∈ S)[I(x) ∩X is small]

hold or equivalently when both

(∃x ∈ S)[I(x) ∩X is large] =⇒ ∗ ∈ X

(∀x ∈ S)[I(x) ∩X is large] =⇒ x ∈ X
hold.
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Definition 11.1.5. For each tree S we call the associated space S the boss space of S
with OS the boss topology. The extra point ∗ is the boss of the space. �

We will see how the boss ∗ controls many of the properties of S and so explain the
terminology.

We will need some examples of open sets and closed sets.

Example 11.1.6. (a) For each y ∈ S the principal upper section

U = ↑y = {z ∈ S | y ≤ z}

is open. By construction ∗ /∈ U so it suffices to consider those x ∈ U . For such an x we
have I(x) ⊆ U so that I(x)− U = ∅ which is certainly small.

(b) For each open set V with ∗ /∈ V and each y ∈ S the set

U = V − ↑y

is open. Since ∗ /∈ U it suffices to consider those x ∈ U . For such an x we have

I(x)− U = (I(x)− V ) ∪ (I(x) ∩ ↑y)

and the first component is small (since x ∈ V ∈ OS). Consider any z in the second
component. Thus z is an immediate successor of x and y ≤ z, hence x < y ≤ z (since S
is a tree and y � x). The gap property gives z = y. Thus the second component is no
more than a singleton.

(c) Consider a countable subset X ⊆ S. For each x ∈ S the set I(x)∩X is small, and
hence X is closed.

(d) Consider any countable Z ⊆ S and any Y ⊆ ↓Z. In other words, for each y ∈ Y
there is some z ∈ Z with y ≤ z. Such a Y is closed. To see this consider any y ∈ I(x)∩Y
(where x ∈ S). Then x is an immediate predecessor of y and y ≤ z for some z ∈ Z. For
this z suppose x has immediate successors y1, y2 ∈ Y such that y1, y2 ≤ z. By the tree
property we may suppose x < y1 ≤ y2 ≤ z, but then y1 = y2 since x is an immediate
predecessor of y2. This shows there is an injection

I(x) ∩ Y - Z

so that I(x) ∩ Y is countable, and hence small. �

Using these examples we can obtain the fundamental property of S.

Lemma 11.1.7. The space S is T1 and sober.

Proof. For x ∈ S the set {x} is countable and closed (by Example 11.1.6(c)). Also

{∗}′ = S =
⋃
{↑y | y ∈ S}

which is open. This shows that every point of S is closed, and hence S is T1.
To see that S is sober consider any closed irreducible set Z. We must show that Z is

a singleton. To do that we first show that Z ∩ S is no more than a singleton.
By way of contradiction suppose there are distinct x, y ∈ Z ∩ S. Set U = ↑x and

V = ↑y. Both U and V are open, and since

x ∈ Z ∩ U y ∈ Z ∩ V
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the irreducibility of Z ensures that

Z meets U ∩ V

to give x, y ≤ z ∈ Z for some z ∈ S. Since S is a tree we may suppose x < y ≤ z (by
symmetry). The set

W = ↑x− ↑y

is open (by Example 11.1.6(a, b)) and

x ∈ W ∩ Z

so that
Z meets W ∩ V

(by a second use of the irreducibility). Since

W ∩ V ⊆ V ′ ∩ V = ∅

this gives the required contradiction.
This shows that either Z is a singleton or has the form {∗, x} for some x ∈ S. We

must exclude this second case.
Suppose Z = {∗, x}. Then

x ∈ Z ∩ ↑x ∗ ∈ Z ∩ {x}′

with both ↑x and {x}′ open. Thus

Z meets ↑x ∩ {x}′

by a third use of irreducibility. This gives some z ∈ Z ∩ S with x < z, which can not be
since Z ∩ S is no more than a singleton.

Our next task is to describe the family QS of compact saturated subsets of S. Since
S is T1 these are the compact subsets of S. As usual, each finite subset is compact, but
here we have the converse.

The proof of the following is the crucial step where we need

countable =⇒ small

as the proof will not work if ‘small’ means ‘finite’.

Lemma 11.1.8. For the space S each compact subset is finite.

Proof. Let Q ∈ QS. We prove that Q is finite in two steps. First we show that certain
sections of Q are finite, then we go for the whole set.

Recall that a subset L ⊆ S is an antichain if

y ≤ z =⇒ x = y

holds for all y, z ∈ L. For example, for each x ∈ S the set I(x) is an antichain.
We show first that for each antichain L of S, the intersection Q ∩ L is finite.
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By way of contradiction suppose Q ∩ L is infinite. Thus there is a countably infinite
subset X ⊆ Q ∩ L. This set X is closed (by Example 11.1.6(c)). Thus

X ′ ∪ {↑x | x ∈ X}

is an open cover of S (since ∗ ∈ X ′), and hence of Q. The compactness gives

X ⊆ Q ⊆ X ′ ∪ ↑x1 ∪ · · · ∪ ↑xm

for some x1, . . . , xm ∈ X and hence

X ⊆ L ∩ (↑x1 ∪ · · · ∪ ↑xm)

holds. Consider any y ∈ X. Then y ∈ L and xi ≤ y for some 1 ≤ i ≤ m. But xi ∈ X ⊆ L
and L is an antichain, so that y = xi. This gives

X ⊆ {x1, . . . , xm}

which is the contradiction (since X was supposed to be infinite).

Secondly we use this observation to show that Q is finite.

Consider any subset H ⊆ S. For each x ∈ S the set I(x) is an antichain and so
I(x) ∩ Q ∩ H is finite and hence small. This shows that Q ∩ H is closed. In particular
for each q ∈ Q the set

Xq = Q ∩ {q}′

is closed, and hence

Uq = Xq
′ = Q′ ∪ {q}

is open. But

{Uq | q ∈ Q}

is an open cover of S, so a second use of the compactness of Q gives

Q ⊆ Q′ ∪ {q1, . . . , qm}

for some q1, . . . qm ∈ Q. Thus

Q ⊆ {q1, . . . , qm}

to give the required result.

Lemmas 11.1.7 and 11.1.8 combine to give the following.

Theorem 11.1.9. For each tree S the associated boss space S is T1, sober, and tightly
packed.

This result suggests that the boss space of a tree is quite nice. However, we will show
that such a space can be quite a way from being T2. We do that by analysing the stacking
properties.
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11.2 Stacking properties of a boss space

We will show that for suitably chosen S the space S can be stacked with an arbitrarily
large degree of tidiness. To do that we need some properties of the derivatives Q̂ for
Q ∈ QS. These operators were first introduced in Section 5.6. Our eventual aim is to

show how each of these is controlled by the particular case {̂∗} obtained from Q = {∗}.

Lemma 11.2.1. For each Q ∈ QS we have

Q̂(Q) = Q Q̂(Q ∪X) = Q ∪ Q̂(X)

for each X ∈ CS.

Proof. We have

Q̂(Q) =
⋂
{(Q ∩ U)− | Q ⊆ U ∈ OS} = Q− = Q

since Q is closed. With this

Q̂(Q ∪X) = Q̂(Q) ∪ Q̂(X) = Q ∪ Q̂(X)

as required.

We need a fuller description of the behaviour of Q̂ on certain closed sets.

Definition 11.2.2. For each X ⊆ S we use

x ∈ �(X) ⇐⇒ x ∈ S ∩X and I(x) ∩X is small

(for x ∈ S) to extract a subset �(X) of X.
We set

X∗ = X −�(X)

to produce the complement subset. �

By definition of the topology we have

∗ /∈ X ∈ CS =⇒ �(X) = X =⇒ X∗ = ∅

but if ∗ ∈ X ∈ CS then X∗ may be non-empty. However, we do have the following.

Lemma 11.2.3. For each X ∈ CS the set X∗ is closed.

Proof. If ∗ /∈ X then X∗ = ∅ which is closed.
Suppose ∗ ∈ X, so that ∗ ∈ X∗ (since ∗ /∈ �(X)). We have

I(y) ∩X∗ ⊆ I(y) ∩X

so it suffices to show that the larger set is small for each y ∈ S−X∗. Consider such a y.
If y /∈ X then I(y) ∩X is small (since X is closed). If y ∈ X −X∗ then y ∈ �(X), and
hence I(y) ∩X is small (by definition of �(X)).

The following indicates why the set �(X) is useful and why the point ∗ is so bossy.
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Lemma 11.2.4. For each Q ∈ QS and X ∈ CS we have

X ∩Q ⊆ Q̂(X) ⊆ X∗ ∪ (X ∩Q)

with
Q̂(X) = X∗ ∪ (X ∩Q)

when ∗ ∈ Q.

Proof. The left hand inclusion is immediate.
For the right hand inclusion we have

X = X∗ ∪ �(X) = X∗ ∪ (Q ∩ �(X)) ∪ (�(X)−Q) ⊆ X∗ ∪ (X ∩Q) ∪ (�(X)−Q)

so that an implication
z ∈ �(X)−Q =⇒ z /∈ Q̂(X)

will suffice. To this end consider any z ∈ �(X)−Q and observe that

z ∈ X I(z) ∩X is small z /∈ Q

hold. Let U = {z}′ so that U is open with Q ⊆ U and ∗ ∈ U . We show that X ∩ U is
closed, so that

Q̂(X) ⊆ (X ∩ U)− = X ∩ U = X − {z}

and hence z /∈ Q̂(X). Since (X ∩ U)− ⊆ X it suffices to show that

I(x) ∩X is small

for all x /∈ (X ∩ U).
Firstly, for each x ∈ S we have

∗ /∈ X ∩ U =⇒ ∗ /∈ X =⇒ I(x) ∩X is small

since X is closed.
Secondly, consider x ∈ S− (X ∩U). If x /∈ X then I(x)∩X is small since X is closed.

If x /∈ U = {z}′ then x = z and so x ∈ �(X) (by choice of z) which again leads to the
required result.

To prove the equality it suffices to show that X∗ ⊆ Q̂(X) whenever ∗ ∈ Q.
If ∗ /∈ X then X∗ = ∅ and then this inclusion certainly holds. Thus we may suppose

∗ ∈ X.
Consider any U ∈ OS with Q ⊆ U and let V = (X ∩ U)−

′
. We show that

X ∩ V ⊆ �(X)

so that
X ⊆ (X ∩ U)− ∪ �(X)

and hence
X∗ = X −�(X) ⊆ (X ∩ U)−

which, since U is arbitrary, gives the result.
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Observe that
X ∩ U ∩ V ⊆ V ′ ∩ V = ∅

so that X ⊆ U ′ ∪ V ′ and hence

I(x) ∩X ⊆ I(x) ∩ (U ′ ∪ V ′) = (I(x) ∩ U ′) ∪ (I(x) ∩ V ′)

for each x ∈ S. Consider any x ∈ X ∩ V . Then both

I(x) ∩ U ′ I(x) ∩ V ′

are small (since ∗ ∈ Q ⊆ U in the left hand case and since V is open in the right hand
case). Thus I(x)∩X is small, and hence x ∈ �(X) (since x ∈ X), as required to complete
the proof.

One particular example of Q ∈ QS is the singleton {∗}. This explains our use of the
notation X∗.

Corollary 11.2.5. For each X ∈ CS we have {̂∗}(X) = X∗.

Proof. We have
Q̂(X) = X∗ ∪ (X ∩ {∗})

by Lemma 11.2.4. If ∗ /∈ X then X ∩ {∗} = ∅. If ∗ ∈ X then

X ∩ {∗} = {∗} ⊆ X∗

(since ∗ /∈ �(X)). In either case the extra right hand component is absorbed by the left
hand component.

Each Q ∈ QS gives a descending chain

Q = {Q(α) | α ∈ Ord}

of closed sets each of which includes Q. Thus, as usual,

Q(α) = Q̂α(S)

for each ordinal α. On cardinality grounds there is some ordinal ∞ such that Q(α) =
Q(∞) for all ordinals α ≥ ∞ and we then have Q ⊆ Q(∞). We are interested in the size
of ∞ and whether or not Q(∞) = Q. Lemma 11.2.4 indicates that we should pay special
attention to the boss case Q = {∗}.

Definition 11.2.6. Let
S(α) = {̂∗}

α
S

for each ordinal α. Thus

S(0) = S S(α+1) = S(α)∗ S(λ) =
⋂
{(S(α) | α < λ}

for each ordinal α and limit ordinal λ. �

This particular chain provides an upper bound for every Q-chain.
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Lemma 11.2.7. For each Q ∈ QS we have

Q(α) ⊆ S(α) ∪Q

with equality if ∗ ∈ Q.

Proof. We proceed by induction on α. For the base case, α = 0, we have

Q(0) = S = S(0) ∪Q

as required.
For the induction step, α 7→ α+ 1, the induction hypothesis gives

Q(α+ 1) ⊆ Q̂(S(α) ∪Q) = Q̂(S(α)) ∪Q

with equality if ∗ ∈ Q. But now Lemma 11.2.4 gives

Q̂(S(α)) ∪Q ⊆ S(α)∗ ∪ (S(α) ∩Q) ∪Q = S(α+1) ∪Q

with equality if ∗ ∈ Q.
The leap to a limit ordinal is immediate.

Consider Q ∈ QS with ∗ ∈ Q. Then, for each ordinal α we have

Q(α) = S(α) ∪Q

so that by the time the ∗-sequence is stable the Q-sequence is also stable. To obtain a
similar result when ∗ /∈ Q we use the following.

Lemma 11.2.8. Suppose ∗ /∈ Q ∈ QS. Then

Q(1) ⊆ {∗} ∪ ↓Q Q(2) ⊆ ↓Q

and ∗ /∈ Q(∞).

Proof. For the first inclusion consider any x ∈ S− ↓Q. We show that x /∈ Q(1). To this
end let

U = S− ↑x V = ↑x
so that both are open (by Examples 11.1.6 (b, a)). Also, if q ∈ Q then x � q ∈ S, so
that q ∈ U . Thus Q ⊆ U . Finally, U ∩ V = ∅ so that

Q(1) ⊆ U− ⊆ V

and hence x /∈ U− (since x /∈ V ) to give the required result.
For the second inclusion note that the set ↓Q is closed (by Examples 11.1.6(d) and

since Q is finite). Also Q ⊆ S ∈ OS and then

Q̂({∗}) ⊆ ({∗} ∩ S)− = ∅

so that
Q(2) = Q̂(Q(q)) ⊆ Q̂({∗} ∪ ↓Q)) ⊆ Q̂({∗}) ∪ Q̂(↓Q) ⊆ ↓Q

as required.
Finally, since ∗ /∈ ↓Q we have ∗ /∈ Q(2), and hence ∗ /∈ Q(∞).
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This brings us to our main result.

Theorem 11.2.9. Let S be any tree with associated boss space S. Suppose S(θ) = {∗}
for some ordinal θ. Then Q(θ) = Q for all Q ∈ QS.

Proof. Consider any Q ∈ QS. By Lemma 11.2.7 we have

Q ⊆ Q(θ) ⊆ {∗} ∪Q

so that Q is one or other of these two extremes (since the extremes differ by at most one
point).

Suppose ∗ ∈ Q. Then the two extremes are the same, and we have the required
equality.

Suppose ∗ /∈ Q. Then, by Lemma 11.2.8 we have ∗ /∈ Q(θ) and hence Q(θ) = Q.

Of course, this result does not say that every boss space is stacked, merely that its
stacking property is determined entirely by the behaviour of the boss. Later we will see
that some quite simple trees are not stacked. In contrast to this there is a simple property
that ensures that the boss space of a tree is stacked.

Theorem 11.2.10. Let S be a well-founded tree in which each branch is finite. Then its
boss space S is T1, sober, tightly packed and stacked, and hence tidy.

Proof. By Theorem 11.1.9 it suffices to show that the boss space S is stacked. To this end
let X = S(∞), so that X ∈ CS with X∗ = X and hence �(X) = ∅. We require X = {∗}.
By way of contradiction suppose there is some y ∈ X ∩S. This point lies on some branch
of S which, by assumption, is finite. Thus by following this branch upwards we find some
x ∈ X with I(x) ∩X = ∅. But now x ∈ �(X), which is the contradiction.

We will use this result to produce examples of tidy spaces with arbitrarily large degrees
of tidiness. To do that it is convenient to slightly reorganise the material.

As usual let S be a tree with boss space S. We will use certain closed subsets of S of
the form {∗} ∪X for X ⊆ S. We know that

{̂∗}({∗} ∪X) = ({∗} ∪X)∗ = {∗} ∪ Y

for some Y ⊆ X. In this identity the boss ∗ does nothing very useful, it just sits there
and watches. Thus we can more or less forget ∗ and work entirely in S. To help with this
we modify the notation of Definition 11.2.2.

Definition 11.2.11. Let S be a tree. For each X ⊆ S we use

x ∈ XH ⇐⇒ x ∈ X and I(x) ∩X is large

(for x ∈ S) to extract a subset of X. �

In this notation we have

({∗} ∪X)∗ = {∗} ∪XH

for each X ⊆ S where {∗} ∪X is closed. Thus we will use (·)H to do our calculations.
Consider a lower section X of S. By Examples 11.1.6 (a) the complement S − X is

open in the boss space, and hence {∗} ∪ X is closed. We will use (·)H only on certain
lower sections.
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Definition 11.2.12. A lower section X of S is bushy if for each x ∈ X either I(x) ∩X
is large or empty. �

For such a lower section X and x ∈ X, the set I(x) ∩ X is empty precisely when x
is maximal in X. That is, when X is considered as a tree in its own right, the node is a
leaf of X.

The following result is little more than a rephrasing of the definition of (·)H.

Lemma 11.2.13. For each bushy lower section X of S, the nodes in XH are precisely
the non-leaves of X.

We would like to iterate this pruning process (·)H to obtain a descending sequence of
bushy lower sections. However, although for a bushy lower section X the result XH is a
lower section, it need not be bushy. Thus we will have to be a little careful with our use
of (·)H.

It’s time to start looking at particular examples.

11.3 Full splitting trees

For our first examples we look at what must be the best known infinite trees.

Definition 11.3.1. Let I be an alphabet, and let S be the set of all words on I, including
the empty word ⊥. Thus each x ∈ S is a list (finite sequence)

x = ⊥i1 . . . il

of letters i1, . . . il ∈ I. Here l is the length of x and l = 0 is allowed. These words are
partially ordered by extension, thus x ≤ y (for words x, y) precisely when

y = xi1 . . . il

for some sequence i1, . . . , il of letters (and again l = 0 is allowed). This makes S a well
founded tree. �

For each word x ∈ S
I(x) = {xi | i ∈ I}

is the set of immediate successors of x. The cardinality of I(x) is important, and this
is the cardinality of the parent alphabet I. There are several cases, some of which are
pathological.

(0) When I is empty the tree S has a single node, the bottom ⊥.
(1) When I is a singleton the tree S is a copy of the natural numbers.
(2) When I has just two members S is the Cantor tree, the full binary splitting tree.
(ω) When I is countably infinite S is the Baire tree.
(Ω) When I is uncountable the tree S is much more interesting.
Notice that although Theorem 11.1.9 does apply to this tree, Theorem 11.2.10 does

not since S has infinite branches (except when I is empty).
The difference between a countable and an uncountable alphabet is dramatic.
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Theorem 11.3.2. For an alphabet I let S be the full I-splitting tree of Definition 11.3.1.
(ω) If I is countable then SH = ∅.
(Ω) If I is uncountable then SH = S.

Proof. For each node x ∈ S we have x ∈ SH precisely when I(x) is large, that is uncount-
able. This is never so for case (ω) and always so for case (Ω).

This gives rise to some interesting properties.

Corollary 11.3.3. If I is uncountable then the boss topology on S = {∗}∪ S is not tidy.

Proof. This follows directly from the previous theorem. Let Q be the compact saturated
set {∗} so that

Q(1) = S(1) = {∗} ∪ SH = S

and so Q(α) = S for every ordinal α. Thus S is not tidy.

Lemma 11.3.4. If I is uncountable then the boss topology on S = {∗}∪S is not stacked.

Proof. Consider Q = {∗}. We have {∗}n S since

∗ ∈ U =⇒ U− = S

for every open set U . But

{∗}− = {∗} 6= S

so S is not stacked.

This has some implications for the spatiality of the patch assembly. By Lemma 8.5.11
if a space is not strongly stacked then there exists a compact saturated set Q and asso-
ciated open filter F such that

vF 6= [Q′]

holds. We see that in this case,

vF (⊥) = Q(∞)′ = ∅

whereas

[Q′](⊥) = Q′
◦

= S

and so {∗} is one such Q. This leads to the following.

Theorem 11.3.5. If I is uncountable then the boss topology on S = {∗} ∪ S has a patch
assembly that is not spatial.

Proof. First note that S is a T1 space and as such has no wild points by Corollary 9.4.5
so UPOS = π. We know that

π(vF ) = π([Q′]) = Q′

but vF 6= [Q′] and so π is not an isomorphism. This means that UPOS is not an isomor-
phism and thus POS is not spatial.
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For case (Ω) above there are some interesting subtrees.
The tree S is built up in layers L0, L1, L2, . . . where

L0 = {⊥} Lr+1 = {xi | x ∈ Lr, i ∈ I}

for each r < ω. In other words Ll is the set of words of length l, the set of all nodes

x = ⊥i1 . . . il

for letters i1, . . . il ∈ I.
Now set

S0 = ∅ Sr+1 = Sr ∪ Lr

(for r < ω) to obtain a stratification

S0 ⊆ S1 ⊆ . . . ⊆ Sr ⊆ . . .

of S. Each Sr is a lower section of S and, for an uncountable alphabet I, each is bushy.
Furthermore, the set of leaves of Sr+1 is precisely the layer Lr. Thus Lemma 11.2.13 gives
the following.

Lemma 11.3.6. For an uncountable alphabet I we have

Sr+1
H = Sr

for each r < ω.

Thus if we view Sr+1 as a tree then r uses of (·)H will achieve S0 = {⊥} and one more
use will achieve ∅. We convert this tree into a boss space.

Theorem 11.3.7. For each r < ω there is a space Sr which is T1, sober, tightly packed
and stacked with degree of tidiness exactly r + 1.

This shows that the hierarchies of separation properties described in Sections 8.2 and
8.3 go at least as far as ω. The next job should be to produce a space of degree ω.
However, it turns out that it is easier to deal with larger successor ordinals first. We
return to ω later.

In Section 5.7 we indicated that even for a reasonably nice frame A there can be a
block of NA with a complicated structure. Here we can give the details of that example.

The same observations were used again in Section 8.6, this time in connection with
the V -points of a frame.

We can now fill in the missing details, but before that let’s review what is needed.
Let A be a frame, let F be an open filter on A and consider the block

[vF , wF ]

of NA, that is the block of all nuclei j on A with ∇(j) = F . To show that this can be
complicated we look at the principal lower section

IF = [vF (⊥), wF (⊥)]F

of the quotient AF of A (obtained from the nucleus vF ). We want an example where this
interval has many members.
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We use the topology A = OS of the space S = {∗} ∪ S with the open filter given by
Q = {∗}. We have seen that

vF (∅) = S ′ = ∅ wF (∅) = {∗}′

so the problem is to exhibit a large number of closed sets X ∈ CS with ∗ ∈ X and QnX.
We obtain these from certain subtrees of S. First observe that

{∗}nX ⇐⇒ X = X∗

by Lemma 8.5.8 and Corollary 11.2.5.
By definition, if X ∈ CS then

I(x) ∩X large =⇒ x ∈ X

for all x ∈ S. In fact, we can strengthen this.

Lemma 11.3.8. For each X ∈ CS we have

I(x) ∩X large =⇒ x ∈ X∗

for each x ∈ S.

Proof. This is immediate from the definitions since I(x) ∩X large means x /∈ �(X) so

x ∈ X −�(X) = X∗

as required.

Theorem 11.3.9. For each bushy subset T ⊆ S we have

X = X∗

where X = {∗} ∪ T .

Proof. Since ∗ ∈ X we have ∗ ∈ X∗. Consider any other x ∈ X. Then x ∈ T and

I(x) ∩X = I(x) ∩ T

and this is large by the choice of T . Thus x ∈ X∗ by Lemma 11.3.8.

This gives us the closed sets we are looking for.

11.4 Some wide trees

To get beyond ω we need trees that are slightly more complicated than the set of all words
on an alphabet. Where might we find such trees? To help with this let us say a tree is
standard if it is well founded, rooted and each branch is finite. Thus Theorem 11.2.10
applies to standard trees. A standard tree is rooted in the sense that it has a bottom,
there is a node ⊥ for which ⊥ ≤ x for each node x. Let’s look at a method by which
standard trees can be grown.
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The single node

⊥

is a standard tree, but not a very interesting one.
Given any indexed family

T = (T(j) | j ∈ J)

of standard trees we may form

S =
T

⊥
by placing T above a new root ⊥. This tree is standard because each branch of S is a
branch of some T(j) with an extra node stuck onto the bottom end. In S the immediate
successors of the root are the roots of the component trees T(j). In particular, we may
have ⊥ /∈ SH unless we make the index set J large. We will always ensure that.

Let I be some fixed uncountable set. Given a standard tree T we write T · I for I
copes of T. We sit these copies above a new bottom to form a new tree

S =
T · I
⊥

in which ⊥ ∈ SH. In fact

SH =
TH · I
⊥

where, of course, TH may be empty and hence SH = {⊥}.
We refine and iterate this construction.
Given an indexed family

T = (T(j) | j ∈ J)

of standard trees we set

T · I = (T(j) · I | j ∈ J)

to obtain I copes of each component of T. (It doesn’t matter in which order the compo-
nents are listed.)

Definition 11.4.1. A McTree is grown as follows.
• ⊥ is a McTree.
• If T is a non-empty indexed family of McTrees then

S =
T · I
⊥

is a McTree.
There are no other McTrees. �

Observe that a McTree is a standard tree. In particular, each branch is finite. How-
ever, such a tree can be very wide, and we will exploit that feature.

Because the fixed indexing set I is uncountable, each McTree is bushy and so Lemma 11.2.13
gives the following.

Lemma 11.4.2. For each McTree S the nodes in SH are precisely the non-leaves.
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In more pictorial detail we see that((T(j) · I | j ∈ J)

⊥

)H

=
(T(j)H · I | j ∈ J)

⊥

where, of course, some of the T(j)H may be empty. From this we see that if S is a McTree
then so is SH, and hence we may iterate (·)H for a while to obtain less complicated
McTrees.

Definition 11.4.3. For each McTree S let

(S(α) | α ∈ Ord)

be the ordinal indexed family of McTrees generated by

S(0) = S S(α+1) = S(α)H S(λ) =
⋂
{S(α) | α < λ}

for each sufficiently small ordinal α and sufficiently small limit ordinal λ. �

By Theorem 11.2.10 we know that if we iterate (·)H for too long then eventually we
obtain ∅. This is why we use ‘sufficiently small’ ordinals in Definition 11.4.3. Returning
to the picture we have((T(j) · I | j ∈ J)

⊥

)(α)

=
(T(j)(α) · I | j ∈ J)

⊥

for each ordinal α that is not too large (and so at least one T(j)(α) is non-empty).
For each McTree S there is a least ordinal σ with S(σ) = ∅. Notice that this σ can

never be a limit ordinal (for consider the role of the bottom of S). What can σ be? To
answer that we use a collection of particular McTrees.

Definition 11.4.4. Let
(R(α) | α ∈ Ord)

be the ordinal indexed family of McTrees generated by

R(0) = ⊥ R(α+ 1) =
R(α) · I
⊥

R(λ) =
(R(α) · I | α < λ)

⊥
for each ordinal α and limit ordinal λ. �

Because of the limit clause in this construction these trees R(·) can become very wide.
Because of this, they can take a long time to cut down.

Lemma 11.4.5. For each ordinal α we have R(α)(α) = ⊥.

Proof. We proceed by induction on α.
The base case, α = 0, is immediate.
For the step case α 7→ α+ 1 the induction hypothesis gives

R(α)(α) = ⊥

so that
R(α)(α+1) = 0
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and hence

R(α+ 1)(α+1) =
R(α)(α+1) · I

⊥
= ⊥

as required.

For the leap to a limit ordinal λ we have

R(λ)(β) =
(R(α)(β) · I | α < λ)

⊥

for ordinals β that are not too large. Of course, some of the components R(α)(β) will be
empty. In fact, by the induction hypothesis we have

R(α)(β) = ∅

for α < β ≤ λ. The particular case β = λ gives the required result.

Of course, once we have pruned a tree down to its root, one more pruning will get rid
of everything. Thus we have the following.

Lemma 11.4.6. For each ordinal α the least ordinal σ with R(α)(σ) = ∅ is α+ 1.

Finally, by converting each tree R(α) into its boss space we obtain the following
extension of Theorem 11.3.7.

Theorem 11.4.7. For each ordinal α there is a space Sα which is T1, sober, tightly
packed, and stacked with degree of tidiness exactly α+ 1.

This shows that the hierarchies of Sections 8.2 and 8.3 are never ending in the sense
that arbitrarily large degrees of tidiness can be achieved. What it doesn’t show is that the
degree of tidiness can be a limit ordinal. To do that we need a different construction.

11.5 The top down tree

This is our first, and only, example of a tree that is not wellfounded. We will see that,
except for the top row, every node of this tree has uncountably many successors.

We begin as before by constructing a partial order. Take an uncountable set. For
clarity we will use the real interval (0, 1). We use the fact that an uncountable set can
be split into uncountably many disjoint subsets, each of which is uncountable.

We need a function that will map (0, 1) onto itself in such a way that each point in
the interval is the image of uncountably many points. In other words, we require f such
that

f : (0, 1) - (0, 1)

and for each x ∈ (0, 1) the set {p | p ∈ (0, 1), f(p) = x} is uncountable. For example, let
f be the map that takes the even placed digits in the binary representation of p to form
another real number between 0 and 1.
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Definition 11.5.1. Let U be the set (0, 1)×N so that members of U are the pairs (p, n)
where p ∈ (0, 1), n ∈ N. We define an ordering ≤ on U to be the smallest partial ordering
satisfying the condition

(p, n) ≥ (f(p), n+ 1)

so that for n ≥ 1 each (p, n) has uncountably many points above it.
We refer to this as the top down uncountably branching tree. �

Unlike the infinite trees of Section 11.3, however, our tree has a top row but no bottom
row. Although it is infinite, it does have leaves.

Definition 11.5.2. Let S↓ be U ∪ {∗} furnished with the boss topology. �

The reason this tree was constructed was to give an example of a space which is ω-tidy
but not finitely tidy.

Lemma 11.5.3. The space S↓ is ω-tidy but not n-tidy for any finite n.

Proof. We define
Ui = {(p, n) | p ∈ (0, 1), n ≥ i}

so that Ui is the tree U with the top i rows removed. We show by induction that

(S↓)
(α) = {∗} ∪ Uα

for each finite ordinal α. Clearly the base case is true when α = 0. Using the notation
from Section 11.2 recall that

({∗} ∪ Ui)
∗ = {∗} ∪ Ui

H

and Lemma 11.2.13 tells us that Ui
H is precisely the set of non leaves of Ui, which is just

Ui+1. Thus the induction step follows by

S↓
(α+1) = (S↓

(α))
∗

= ({∗} ∪ Uα)∗ = {∗} ∪ Ui
H = {∗} ∪ Uα+1

as required. This shows that S↓ is not n-tidy for any finite n.
When we make the jump to the limit ordinal ω we get

S↓
(ω) =

⋂
{S↓(α) | α < ω} =

⋂
{{∗} ∪ Ui | i ∈ N} = {∗}

which shows that S↓ is ω-tidy as claimed.

We are still missing examples that have tidyness λ for limit ordinals λ that are greater
than omega. I believe it should be possible to produce such examples, but we did not
think it was worth spending the time to construct them.
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